

Nonlinearity Estimation for Efficient Resource Allocation in Elastic Optical Networks

Rui Wang, Sarvesh Bidkar, Reza Nejabati and Dimitra Simeonidou High Performance Networks Group, University of Bristol

High Performance Networks Group

- Motivation
- Current solution of nonlinearity analysis
- Proposed hybrid nonlinearity model
- Nonlinearity aware resource allocation algorithm
- Results
- Conclusion

 Optical link introduce penalties which affect connections quality.

Existing Method to Use Nonlinearity Information

Worst-case or known as reference margin (RM) method

- Pros: Easy to implement/calculate.
 Does not require complex model or expensive nonlinear impairments monitoring techniques.
- Cons: Sacrifice network performance when the network not in worst case.

Existing Method to Use Nonlinearity Information

Accurate nonlinearity information

- Pros: More accurate information, improve network performance if traffic matrix pre-known.
- Cons: Computational complex model, expensive monitoring hardware.
- May block the future requests when traffic matrix unknown.

Worst-case/reference margin method has much better performance in terms of blocking ratio.

This is due to inter-channel blocking problem.

- Hybrid nonlinearity model
 - Step-wise margin based on assigned spectrum index and link occupancy condition.
 - 5 loading states of continuous channel occupancy within an optical link as 20%, 40%, 60%, 80% or 100% occupied assumed in our work.
 - Nonlinearity are calculated based on above 5 loading states in advanced.
 - No inter-channel blocking for adding new lightpath when the link remains within same loading state.

Thus $P_{NLI} = P_{ch}^3 \sum_{m,n,l} \beta_{m,n}^l$

 $\beta_{m,n}^{l}$: nonlinear coefficient of link l, frequency index m and loading state n P_{ch} : lauch power of one frequency slot

- Sequential loaded EON:
 - Up to 130 more 100G requests using congestion-aware routing
 - Up to 100 more mixed traffic requests in congestion-aware routing
 - Still better performance under two traffic model using shortest path routing.

 Using hybrid nonlinearity model tends to utilize more high modulation formats than conservative reference margin (RM) method.

NARA Algorithm Flowchart

High Performance Networks Group

- Transparent dual-polarization optical system using coherent detection without inline compensation.
- Rectangle Nyquist spectrum shape and no guard band.
- Nonlinearity accumulates incoherently along spans.
- Equal transmission PSD among different channels.
- Power loss is completely compensated by EDFA.
- Bandwidth variable and modulation format adaptable transceivers being deployed.
- The traffic requests include FEC overhead.

- 12.5 GHz grid optical system deployed SMF.
- NSFNET topology with 80 km/span
- 100 Gbps requests and mixed line-rate traffic requests (10 Gbps 400 Gbps).
- Pre-FEC BER threshold: 4×10^{-3} .
- Interval time of traffic requests: Poisson distribution
- Service holding time: exponentially distributed

NARA algorithm achieves between 5% to 15% higher service acceptance ratio than the benchmark method.

Service average holding time to be 8000 time units

NARA experiences 5-10% less blocking compared to benchmark for 100 Gbps traffic request and approximate 5% improvement for mixed line-rate requests.

Spectrum utilization after 10000 service demands.

NARA is able to achieve:

4% to 7% more network spectrum utilization for 100 Gbps requests. Approximate 6% more network spectrum utilization for mixed requests.

- Mixed traffic request:
- At least 4% improvement for all scenarios.
- Small service holding time: more advantages for large traffic requests (100 Gbps and 400 Gbps), 11% - 13% higher
- Large service holding time: more advantages for small traffic requests (10 Gbps and 40 Gbps), 7% - 9%.

- Hybrid nonlinearity model is simple and accurate.
- The NARA algorithm using hybrid nonlinearity model significantly improves network service acceptance ratio.
- NARA using hybrid nonlinearity model achieves higher spectral efficiency and higher network utilization.
- NARA favours different traffic types depending on network congestion status.

Thank you. Any question?

High Performance Networks Group

LARA Solution Showcase

- We develop a step-wise load-aware nonlinearity model.
 - More accurate than the worst-case/reference margin scenario.
 - Computational