Poznan University of Technology

Faculty of Electronics and Telecommunications
Chair of Communication and Computer Networks

ONDN:2017

21 +i. NTERNATIONAL CONFERENCE ON
Optical neiwork Design and Modeling
MAY 5 5-17, 2017 EUDAPEST, HUNGARY:

Simultaneous Connections Routing in W-S-W Elastic Optical Switches with Limited Number of Connection Rates

Wojciech Kabacinski, Remigiusz Rajewski, Atyaf AI-Tameemi

Outline

- Introduction
- Problem Statement
- Model Description
- Control Algorithm
- Theorem 1 and 2
- Example
- Conclusion and Future Work

Elastic Optical Networking

Switching Fabric Architecture

W-S-W (wavelength-space-wavelength) switching fabric.

Three Stage Clos Network

ONDM 2017 Simultaneous Connections Routing in WSW

Three Stage Clos Network

ONDM 2017 Simultaneous Connections Routing in WSW

Problem Statement

ONDM 2017 Simultaneous Connections Routing in WSW

Assumption

- We have a set of compatible connection requests \mathbb{C}.
- m-slot connection is denoted by $\left(I_{i}[x], O_{j}[y], m\right)$.
- Limited number of connection rates: m_{1}-slot connections m_{2}-slot connections
m_{z}-slot connections

Example of \mathbb{C}

ONDM 2017 Simultaneous Connections Routing in WSW

Model Description

- All connections of a given size can be represented as a matrix: $H^{m_{x}, 1 \leq x \leq z}$.

$$
H^{m_{x}}=\left[\begin{array}{ccc}
h_{11}^{m_{x}} & \cdots & h_{1 r}^{m_{x}} \\
\vdots & \ddots & \vdots \\
h_{r 1}^{m_{x}} & \cdots & h_{r r}^{m_{x}}
\end{array}\right]
$$

Model Description

$$
H^{m_{1}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \quad H^{m_{2}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad H^{m_{3}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Properties of $H^{m_{x}}$

$\%$ All matrices $H^{m_{x}}$ have the following properties:

- $\quad \sum_{j=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n$

$$
\sum_{i=1}^{r} \sum_{x=1}^{Z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n
$$

- If $z=2, r=3$

$$
H^{m_{2}}=\left[\begin{array}{lll}
h_{11}^{m_{2}} & h_{12}^{m_{2}} & h_{13}^{m_{2}} \\
h_{21}^{m_{2}} & h_{22}^{m_{2}} & h_{23}^{m_{2}} \\
h_{31}^{m_{2}} & h_{32}^{m_{2}} & h_{33}^{m_{2}}
\end{array}\right]
$$

Properties of $H^{m_{x}}$

$\%$ All matrices $H^{m_{x}}$ have the following properties:

$$
\begin{aligned}
& \sum_{j=1}^{r} \sum_{x=1}^{Z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n \\
& \sum_{i=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n
\end{aligned}
$$

- If $z=2, r=3$

$$
H^{m_{2}}=\left[\begin{array}{ccc}
h_{11}^{m_{2}} & h_{12}^{m_{2}} & h_{13_{2}}^{m_{2}} \\
h_{21}^{m_{2}} & h_{22}^{m_{2}} & h_{23}^{m_{2}} \\
h_{31}^{m_{2}} & h_{32}^{m_{2}} & h_{33}^{m_{2}}
\end{array}\right],
$$

Properties of $H^{m_{x}}$

$\%$ All matrices $H^{m_{x}}$ have the following properties:

$$
\begin{aligned}
& \sum_{j=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n \\
& \sum_{i=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n
\end{aligned}
$$

- If $z=2, r=3$

$$
H^{m_{1}}=\left[\begin{array}{lll}
h_{11}^{m_{1}} & h_{12}^{m_{1}} & h_{13}^{m_{1}} \\
h_{21}^{m_{1}} & h_{21}^{m_{1}} & h_{23}^{m_{1}} \\
h_{31}^{m_{1}} & h_{32}^{m_{1}} & h_{33}^{m_{1}}
\end{array}\right],
$$

$$
H^{m_{2}}=\left[\begin{array}{lll}
h_{11}^{m_{2}} & h_{12}^{m_{2}} & h_{13}^{m_{2}} \\
h_{21}^{m_{2}} & h_{22}^{m_{2}} & h_{23}^{m_{2}} \\
h_{31}^{m_{2}} & h_{32}^{m_{2}} & h_{33}^{m_{2}}
\end{array}\right],
$$

Properties of $H^{m_{x}}$

$\%$ All matrices $H^{m_{x}}$ have the following properties:

$$
\begin{aligned}
& \sum_{j=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n \\
& \sum_{i=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n
\end{aligned}
$$

- If $z=2, r=3$

$$
H^{m_{1}}=\left[\begin{array}{lll}
h_{11}^{m_{1}} & h_{12}^{m_{1}} & h_{13}^{m_{1}} \\
h_{21}^{m_{1}} & h_{22}^{m_{1}} & h_{23}^{m_{1}} \\
h_{31}^{m_{1}} & h_{32}^{m_{1}} & h_{33}^{m_{1}}
\end{array}\right]
$$

$$
H^{m_{2}}=\left[\begin{array}{lll}
h_{11}^{m_{2}} & h_{12}^{m_{2}} & h_{13}^{m_{2}} \\
h_{21}^{m_{2}} & h_{22}^{m_{2}} & h_{23}^{m_{2}} \\
h_{31}^{m_{2}} & h_{32}^{m_{2}} & h_{33}^{m_{2}}
\end{array}\right]
$$

Properties of $H^{m_{x}}$

$\%$ All matrices $H^{m_{x}}$ have the following properties:

$$
\begin{aligned}
& \sum_{j=1}^{r} \sum_{x=1}^{Z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n \\
& \sum_{i=1}^{r} \sum_{x=1}^{Z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n
\end{aligned}
$$

- If $z=2, r=3$

$$
H^{m_{1}}=\left[\begin{array}{cc:c}
h_{11}^{m_{1}} & h_{12}^{m_{1}} & h_{13}^{m_{1}} \\
h_{21}^{m_{1}} & h_{22}^{m_{1}} & h_{23}^{m_{1}} \\
h_{31}^{m_{1}} & h_{32}^{m_{1}} & h_{33}^{m_{1}}
\end{array}\right] \quad H^{m_{2}}=\left[\begin{array}{c:c}
h_{11}^{m_{2}} & h_{12}^{m_{2}} \\
h_{21}^{m_{2}} & h_{13}^{m_{2}} \\
h_{31}^{m_{2}} & h_{23}^{m_{2}} \\
h_{32}^{m_{2}} & h_{33}^{m_{2}}
\end{array}\right]
$$

Properties of $H^{m_{x}}$

* All matrices $H^{m_{x}}$ have following properties:
- $\quad \sum_{j=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{X}} * m_{x}\right)=n$

$$
\sum_{i=1}^{r} \sum_{x=1}^{z}\left(h_{i j}^{m_{x}} * m_{x}\right)=n
$$

- If $z=2, r=3$

$$
H^{m_{1}}=\left[\begin{array}{cc:c}
h_{11}^{m_{1}} & h_{12}^{m_{1}}: h_{13}^{m_{1}} \\
h_{21}^{m_{1}} & h_{22}^{m_{1}} & h_{23}^{m_{1}} \\
h_{31}^{m_{1}} & h_{32}^{m_{1}} & h_{33}^{m_{1}}
\end{array}\right] \quad H^{m_{2}}=\left[\begin{array}{cc:c}
h_{11}^{m_{2}} & h_{12}^{m_{2}} & h_{13}^{m_{2}} \\
h_{21}^{m_{2}} & h_{22}^{m_{2}} & h_{23}^{m_{2}} \\
h_{31}^{m_{2}} & h_{32}^{m_{2}} & h_{33}^{m_{2}}
\end{array}\right]
$$

Control Algorithm

$$
\begin{aligned}
& b_{\max }^{m_{x}} \quad b_{\min }^{m_{x}} \\
& c_{\text {min }}^{m_{x}}=\min \left\{a_{\text {min }}^{m_{x}} ; b_{\min }^{m_{x}}\right\}
\end{aligned}
$$

Example

$$
H^{m_{1}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \quad H^{m_{2}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad H^{m_{3}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Example

$$
\begin{aligned}
& H^{m_{1}}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \longmapsto H^{m_{1}}=\left[\begin{array}{ll}
1^{\prime} & 2 \\
2 & 1^{\prime}
\end{array}\right] \longleftrightarrow P_{1}^{m_{1}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& H_{1}^{m_{1}}=H^{m_{1}}-P_{1}^{m_{1}}=\left[\begin{array}{cc}
0 & 2^{\prime} \\
2^{\prime} & 0
\end{array}\right] \longmapsto \quad P_{2}^{m_{1}}=P_{3}^{m_{1}}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

ONDM 2017 Simultaneous Connections Routing in WSW

Example

$$
H^{m_{2}}=\left[\begin{array}{cc}
1 & 1 \\
\hdashline 0 ; & 1
\end{array}\right] \longleftrightarrow H^{m_{2}}=\left[\begin{array}{cc}
1^{\prime} & 1 \\
1 & 1^{\prime}
\end{array}\right] \longmapsto P_{1}^{m_{2}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
H_{1}^{m_{2}}=H^{m_{2}}-P_{1}^{m_{2}}=\left[\begin{array}{cc}
0 & 1^{\prime} \\
1^{\prime} & 0
\end{array}\right] \longleftrightarrow P_{2}^{m_{2}}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Example

$$
H^{m_{3}}=\left[\begin{array}{cc}
0 & 1^{\prime} \\
1^{\prime} & 0
\end{array}\right] \Longleftrightarrow P_{1}^{m_{3}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Theorem 1

- The WSW1 switching fabric is RNB for m-slot connections, $x \in\left\{m_{x}\right\}$ and $1 \leq x \leq z$, if:

$$
k \geq \sum_{x=1}^{z}\left(\left\lfloor\frac{n}{m_{x}}\right\rfloor * m_{x}\right)
$$

Theorem 2

- The WSW1 switching fabric with $r=2$ is rearangeably nonblocking for m -slot connections, where $m \in\left\{m_{1} ; m_{2}\right\}, m_{1}<m_{2}, \frac{n}{m_{1}}, \frac{n}{m_{2}}$, and $\frac{m_{2}}{m_{1}}$ are integers, is RNB if and only if:

$$
k \geq n
$$

Example

$$
P_{2}^{m_{1}}=P_{3}^{m_{1}}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

ONDM 2017 Simultaneous Connections Routing in WSW

Conclusion and Future Work

- We proposed the control algorithm for simultaneous connection routing in the WSW1 switching fabric.
- For this algorithm, we considered the upper bound for RNB operation in a case when the number of connection rates is limited to z .
- For WSW1 with a limited number of $r=z=2$, where $\frac{n}{m_{1}}$, $\frac{n}{m_{2}}$, and $\frac{m_{2}}{m_{1}}$, are integers, we proved the necessary and sufficient conditions for RNB operation.
- Extend case $r=z=2$ when $\frac{n}{m_{1}}, \frac{n}{m_{2}}$, and $\frac{m_{2}}{m_{1}}$ are not integers.
- Improve upper bound for $r>2$.

Thank You Any Questions?

Comparison between the RNB and SSNB conditions

Number of FSUs k versus $m_{\text {max }}$ for selected n in SSNB and RNB WSW1 switching fabrics

