

Melbourne Networked Society Institute

5G C-RAN Architectures: A Comparison of Multiple Optical Fronthaul Networks

Chathurika Ranaweera¹, Elaine Wong¹, Thas A Nirmalathas^{1,2}, Chamil Jayasundara¹, and Christina Lim¹

¹Department of Electrical and Electronic Engineering, The University of Melbourne, Australia ² Melbourne Networked Society Institute, The University of Melbourne, Australia

networkedsociety.unimelb.edu.au

Why 5G?

- The development of the fifth generation (5G) wireless technology is in progress to address
 - The increasing demands for high capacity,
 - Low latency,
 - Ubiquitous mobile access
- 5G expedited to attain
 - 1000x higher data volume per unit area
 - 100x higher connecting devices,
 - 10x longer battery life and
 - 5x reduced latency
- Demands will be instigated by next-generation mobile and machinecentric applications.

Key Feature of 5G :Small cells

Why C-RAN ?

- Observation: the evolution of radio access network needs to be complimented by an evolution of the transport network.
- One architectural evolutionary solution: Centralised/Cloud Radio Access Network (C-RAN) architecture.
 - significantly lower cost
 - greener communication
 - supporting advanced
 wireless technologies
 - Eg. Cooperative Multi-Point (CoMP)

Base-Band Unit (BBU) Remote Radio Head (RRH)

Challenges in C-RAN

- In the current C-RAN architecture (use in LTE-A): the fronthaul network uses common public radio interface (CPRI) [13] over fiber links.
- Ex: supports 150 Mbps of downlink bandwidth in LTE-A, more than 2 Gbps of optical bandwidth When using CPRI.
- If 5G fronthaul networks use CPRI →

Architecture Comparison

- Three Fronthaul Network Architectures
 - CPRI
 - Physical Layer Split (PLS)
 - Analogue Radio over Fibre (ARoF)

Bandwidth Calculations - CPRI

 N_s is the number of sectors per RRH N_a is the number of antennas S_f is the sampling frequency S_{bw} is the sampling bit-width (I/Q) B_e is the ratio for the controlling overhead L_c is the coding induced capacity increase

Parameters	Current LTE	5G requirement	
N_s	3	3	
N_a	1	8	
S_f	30	30	
S_{bw}	30.72 (for 20 MHz)	30.72*5 (for 100MHz)	
B_{e}	16/15	16/15	
L_{c}	10/8	10/8	

$$B_{CPRI} = N_s * N_a * S_f * S_{bw} * B_e * L_c$$

Bandwidth Calculations -PLS

TTI the transmission time interval (=1*mS*) *M* modulation order (=8 *i.e.* 64*QAM*) N_{sy} number of symbol within a TTI (=12) N_{sc} number of subcarriers (=12) N_{rb} number of resource blocks (=500) N_{mimo} number of MIMO streams (=8)

Parameters	Current LTE	5G requirement	
N_s	3	3	
N_{a}	1	8	
S_{f}	30	30	
S_{bw}	30.72 (for 20 MHz)	30.72*5 (for 100MHz)	
B_{e}	16/15	16/15	
L_{c}	10/8	10/8	

5 Resource Blocks per user so maximum of 100 users considered

Comparison of Bandwidth Requirements

 $B_{CPRI} = N_s * N_a * S_f * S_{bw} * B_e * L_c$ $B_{PLS} = M * N_{sy} * N_{sc} * N_{rb} * N_{mimo} * N_s / TTI$

ARoF: required fronthaul bandwidth depends on the wireless carrier frequency and the bandwidth in use, a typical low-cost transceiver can be used to achieve the 5G targeted data rates when 5G uses the frequency range below 6GHz (IF conversion can be used with very low cost component for higher frequencies).

Comparison: Delay, Advanced Wireless Functions and RRH complexity

	Delay	Advanced Wireless Functions	Complexity of RRH
CPRI	A few hundreds of μs including the propagation delay, round trip CPRI processing delay, and the other fronthaul equipment processing delays.	Facilitate advance wireless cooperation technologies	Simple. However, for higher transmission data rates, Fronthaul needs high data rate optical transceivers.
PLS	An additional processing delay at the RRH compared to the CPRI: symbol level processing implemented in RRH (however, additional delay is less than few μs).	Wireless coding functions and MAC layer functions are centralized in the BBU: can facilitate advance wireless cooperation technologies	RRH related equipment and software need to be upgraded. Network function virtualization (NVF) paradigm can be used to overcome the difficulty in upgrading
ARoF	RRH will be more delay efficient compared to the CPRI. Fronthaul link range will be low compared to other architectures (however still facilitate few km that confirm with 5G BBU-RRH range).	Facilitate advance wireless cooperation technologies all the wireless signals are processed centrally at the BBU	Simple architecture

Deployment Cost comparison

- Optimal Deployment Cost : ILP-based optimization framework
- The total cost consists of the cost of BBU placement, fronthaul and Deploying RRHs.

Optimization Framework

Subject to a range of constraints imposed by requirements of the network such as,

- Population coverage
- The maximum number of BBUs in one central office
- The maximum distance from a RRH to its BBU
- Fibre connectivity

Cost parameter	Description
η_s	Equipment cost of RRH and fronthaul
η_{ri}	Cost of RRH Installation
η_t	Fibre trenching cost/ m
$\eta_{_{fb}}$	Cost of a Fibre bundle/ m
η_{fs}	Cost of fibre preparation
η_{e}	Cost of connecting a fibre at existing fibre facility
η_b	Cost of a BBU
$\eta_{\scriptscriptstyle bi}$	Installation cost of the BBU at the fibre facility

 18 km² suburban area in state of Victoria, Australia

MELBOURNE

• Population : 30,000

Cost – Summary of Optimal Solutions

Contribution of fronthaul, RRH, and BBU cost when the population coverage is 50% and 90%

•	Normalized Cost Values*			
	CPRI: Fronthaul	2912		
	PLS: Fronthaul	200		
•	ARoF: Fronthaul	200		
	CPRI: RRH	220		
	PLS: RRH	300		
	ARoF: RRH	200		
•	BBU	10000		
	Fibre bundle cost	1		

* Normilized to cost of fiber bundles/m

Summary

- We investigated the applicability of different optical fronthaul technologies for CRAN
 - CPRI, PLS and ARoF
- Comparatively analysed their ability to fulfil requirements of delay, bandwidth, and cost-effectiveness of 5G CRAN, ability to support advanced wireless cooperation technologies, and complexity of RRH.
- Comparative cost analyses carried out using developed optimization framework showed that cost-effective fronthaul for 5G could be achieved using PLS and ARoF architectures
- Overall, our analyses provide insight into how a future proof fronthaul network can be realized for 5G C-RAN.

For any more details csr@unimelb.edu.au

Variables

Variable	Values	Description
X _i	1	If ith location is selected for the deployment of a RRH
	0	otherwise
Z _i	1	If ith fibre facility is selected for the deployment of BBU
	0	otherwise
C _{i,j}	1	If there is a fibre route from i th node to j th node
	0	otherwise
Y _{i,j}	integer	Number of fibres in the path from ith node to jth node
B _i	1	If i th household is covered
	0	otherwise

Antenna Base-Stations

• Multiple Sectors, MIMO, Multiple Bands, Carrier Aggregation – leads to complexities or complex requirements for backhaul/front-haul

Networking of Base-Stations(BSs)

Cloud/Virtualisation/Software Defined

4G-5G: Challenges and Opportunities

RF Bandwidth 10x

Spectral Efficiency 20x

Cell Density 10x

> Latency 1/10

- Antenna Arrays in Massive MIMO?
- Millimeter-waves or Spectral farming
- Virtualisable and Software defined
- Cloud access network
- Storage in the network
- Secure
- Critical services

- Photonic Systems for Massive MIMOs
- Microwave/Millimeterwave/
 Photonic integration
- Joint Network Planning and

Optimisation

 Software Defined Optical Networking

5G – Early Demonstrations

- Use of 1GHz is useful for coverage (rural and indoor)
- above 6GHz is useful for very high data rates and shorter-range connectivity (15GHz, 28GHz, 60GHz, 70-85GHz)
- Samsung: 1.2Gbps transmission at 110km/h speed using 28GHz frequency. The stationary transmission test is up to 7.5Gbps
- Ericsson: 5 Gbps throughput at 15 GHz

Digital Interface – CPRI/OBSAI

OBSAI Vs CPRI

OBSAI	CPRI	
8B/10B line coding	8B/10B line coding	
up to 6.144/3.072 Gbps	up to 3.072 Gbps	
Fixed IQ sample envelope size at 16	Programmable 8-20 in downlink 4-20 in uplink	
Include transport and application layers	Only Physical and data link layers	

	OBSAI	CPRI		OBSAI	CPRI
User Data (IQ)	80%	93.75%	LTE 10MHz @12 bits	4	6
Control Data (O&M)	4%	6.225%	LTE 20MHz @12 bits	2	3
Synchronization (K-char)	0.25%	0.025%	LTE 10MHz @16 bits	4	4
Fixed Overheads	15.75%	0%	LTE 20MHz @16 bits	2	2

- OBSAI higher overheads (+15.75%) for enabling flexibility
- CPRI- capacity advantage (+13.75%) for optimized bandwidth allocation
- OBSAI capacity independent of sample envelope size;
- CPRI optimized sample envelope size => more carrier space