Application of Probabilistic Modeling and Machine Learning to the Diagnosis of FTTH GPON Networks\*

Optical Network Design and Modeling conference, Budapest

15<sup>th</sup> May 2017

S. Gosselin<sup>1</sup>, J.-L. Courant<sup>1</sup>, S. R. Tembo<sup>2</sup>, S. Vaton<sup>3</sup>

<sup>1</sup>Orange Labs, Lannion, France <sup>2</sup>formerly Orange Labs, now with ActiveEon, Sophia Antipolis, France <sup>3</sup>IMT-Atlantique, Brest, France





**IMT Atlantique** Bretagne-Pays de la Loire École Mines-Télécom \*This paper highlights key outcomes of the PhD work of Serge Romaric Tembo, defended on January 23<sup>rd</sup> 2017: « Application de l'intelligence artificielle à la détection et l'isolation de pannes multiples dans un réseau de télécommunications »



Introduction: fault diagnosis of FTTH networks

**Context and objectives of the work** 

PANDA: Probabilistic tool for GPON-FTTH Access Network self-DiAgnosis

PANDA V1.0 – no training

**PANDA V2.0** – model parameters improved by machine learning

**Summary and final remarks** 

## Introduction: fault diagnosis of FTTH networks

### Introduction Fault diagnosis of FTTH networks Fault diagnosis

- A fault is a failure explaining a set of symptoms (warnings, alarms, other faults)
- A fault degrades the QoS or leads to service unavailability
- Fault diagnosis correlates observed symptoms so as to determine their root cause(s)
  - > It leverages on monitoring data collected by operator's hot line: counters, powers, temperatures, ...

### Diagnosis example on a Gigabit capable Passive Optical Network (GPON)

- An « upstream Loss of Signal » alarm at the OLT (Optical Line Termination) for ONT #3 (Optical Network Termination)
- Intermediate causes: low received power at the OLT, low transmitted power at ONT #3
- Root cause: faulty power supply of ONT #3

### A tool typically used: the rule-based expert system (RBE)

- Set of expert rules (IF <conditions> THEN <actions>) covering typical fault configurations (e.g. a few tens of rules for GPON)
- Efficient for known issues
- Specialized and deterministic rules: impossible to cover all fault configurations, difficult to maintain

### Context and objectives of the work

### Some alternative approaches to rule-based expert systems

### **Model-based expert systems**

- Explicit modeling of the network structure and behavior (alarm propagation and correlation)
- <u>Example</u>: dependency causal graph → deterministic reasoning algorithm
- Scalability, ability to deal with unknown issues, comprehensibility
- ☺ Modeling complexity, static model

### **Machine learning techniques**

- Inductive capabilities derived from supervised or non-supervised training
- <u>Example</u>: multi-layer artificial neural networks
- Scalability, large induction capabilities
- Blind method, « black box »



### Objectives of this work

### Improve performance of FTTH GPON fault diagnosis

- Allow easier maintenance of diagnosis tool
- Decrease the number of non-identified faults, even when some data is missing
- Maintain or increase diagnosis reliability

### **Diagnosis approach**

- Probabilistic version of dependency causal graphs: Bayesian networks
- Handles non-deterministic fault propagation
- Robust to missing data
- Modular 3-layered model:
  - Layer 1 for modeling dependencies between components
  - Layer 2 for modeling dependencies inside components
  - > Layer 3 for **Bayesian inference** of the whole system
- The model parameters can be tuned through **machine learning**



#### **Bayesian network example**

- X<sub>i</sub> are random variables and edges represent dependencies P(X<sub>i</sub> = k | parents(X<sub>i</sub>) = j )
- Factorization of joint probability: P(X1,X2,X3,X4,X5,X6) = P(X6 | X5) \* P(X5 | X2,X3) \* P(X4 | X1,X2) \* P(X2 | X1) \* P(X3 | X1) \* P(X1)

### PANDA: Probabilistic tool for GPON-FTTH Access Network self-DiAgnosis

## System under study: Gigabit capable Passive Optical Network (GPON)

### **FTTH infrastructure**

- Optical Line Termination (OLT): Central office equipment
- Optical Network Unit / Termination (ONU or ONT): Customer side equipment
- Optical Distribution Network (ODN): distribute optical power from feeder fiber to drop fibers thanks to splitters

### The ODN is typically composed of several splitter stages

Unrestricted



\*RG = Residential Gateways (not in this work's scope)

### Example of the 3 layered generic model Layer 3\*

- Junction tree representation derived from the combination of layers 1 & 2
- Used for Bayesian inference leading to identification of root causes

### Layer 2

 Bayesian networks modeling local fault propagation inside each component N<sub>i</sub> (e.g. a given ONT)

### Layer 1

Network topology as well as distributed fault propagation
between linked components (e.g. ONT-OLT)

10 Unrestricted



## PANDA: Probabilistic tool for GPON-FTTH Access Network self-DiAgnosis

## Application of the model to GPON

- Based on ITU-T standards, and knowledge of current networks
- One L2 Bayesian network per component
- Nodes:
  - ➢ observed
  - ➤ computed
  - root causes

11 Unrestricted



### How PANDA works

#### **Diagnosis computation**

- Collected facts are injected in PANDA as evidence nodes
- Unobserved nodes are inferred based on model parameters
- Diagnosis  $\rightarrow$  the most probable states of root nodes consistent with evidence nodes

### **Result example**

The root cause node « Feeder Fiber » shows a « AT » (Attenuation). The calculated belief
97 %

| Root causes              | States                     | Beliefs                          |
|--------------------------|----------------------------|----------------------------------|
| FiberT<br>(feeder fiber) | [OK, <mark>AT</mark> , BR] | [0,02, <mark>0.97</mark> , 0,01] |

## PANDA V1.0 – no training

PANDA V1.0: model parameters roughly guessed by the expert, no training Confusion matrix between RBE (rows) and PANDA V1.0 (columns) over 10611 cases

| Root causes                    | 1    | 2 | 3   | 4  | 5    | 6   | 7  | 8                | 9                  |
|--------------------------------|------|---|-----|----|------|-----|----|------------------|--------------------|
| 1. No default                  | 7210 |   | 183 | 39 |      |     | 17 |                  | $\mathbf{\Lambda}$ |
| 2. Faulty ONT                  |      | 3 |     |    |      |     |    |                  |                    |
| 3. ONT configuration mistake   |      |   | 0   |    |      |     |    |                  |                    |
| 4. Drop fiber<br>attenuated    |      |   |     | 72 |      |     | 18 |                  |                    |
| 5. Drop fiber broken           |      |   |     |    | 1463 |     |    |                  |                    |
| 6. ONT power supply<br>failure | 2    |   |     |    |      | 780 |    |                  |                    |
| 7. Feeder fiber<br>attenuated  |      |   |     |    |      |     | 0  |                  |                    |
| 8. Feeder fiber broken         |      | 1 |     |    |      |     |    | 57               |                    |
| 9. Unknown root cause          | 716  | 4 |     | 19 |      | 27  |    | $\triangleright$ | 0                  |

- ✓ PANDA always gives a conclusion
- ✓ When the RBE system gives a conclusion, both tools are aligned in 99% of the cases
- ✓ 24% of nonidentified faults for RBE system
- ✓ BUT PANDA scope is smaller (FTTH only)

# PANDA V2.0 – model parameters improved by machine learning

### PANDA V1.0 $\rightarrow$ V2.0

### Tuning of model parameters with machine learning

### **Principle**

- in PANDA V1.0, dependencies P(X<sub>i</sub> = k | parents(X<sub>i</sub>) = j) in the Bayesian networks have been roughly estimated by a human expert
- Dependencies are model parameters that can be estimated by maximizing the likelihood of a training dataset with respect to model parameters
- Maximum Likelihood Estimation has to be adapted in case of incomplete data, because the number of terms of the likelihood of observations is exponential with the number of missing variables → Expectation Maximization
- **Expectation Maximization** is an iterative algorithm composed of 2 steps per iteration:
  - E step: estimation of the expectation of the dataset likelihood under current model parameters, by inferring missing variables in the Bayesian networks
  - > M step: maximization of this expectation to derive new model parameters

### Implementation

- EM algorithm run on PANDA model parameters, starting from V1.0 parameters, based on a training data set of 5121 diagnosis cases. Convergence after ~7 iterations
- Details given in S. R. Tembo et al., IWCMC, Paphos, 2016, pp. 369-376

PANDA V2.0: machine learned model parameters (training data set of 5121 cases) Confusion matrix between V1.0 (rows) and V2.0 (columns) over 5490 test cases

| Root causes     | 1    | 2   | 3   | 4  | 5   | 6   | 7  | 8 | 9 |
|-----------------|------|-----|-----|----|-----|-----|----|---|---|
| 1. No default   | 4030 |     |     | 6  |     | 7   | 9  |   |   |
| 2. Faulty ONT   |      | 0   |     |    |     |     |    |   |   |
| 3. ONT          |      |     |     |    |     |     |    |   |   |
| configuration   |      | / \ | 183 |    |     |     |    |   |   |
| mistake         |      |     |     |    |     |     |    |   |   |
| 4. Drop fiber   |      |     |     | 56 |     |     |    |   |   |
| attenuated      |      |     |     | 50 |     |     |    |   |   |
| 5. Drop fiber   |      |     |     | 14 | 602 |     | 1  |   |   |
| broken          |      |     |     |    | 002 |     | •  |   |   |
| 6. ONT power    |      |     |     |    |     | 102 |    |   |   |
| supply failure  |      |     |     |    |     | 402 |    |   |   |
| 7. Feeder fiber |      | 148 |     |    |     |     | 32 |   |   |
| attenuated      |      |     |     |    |     |     | 52 |   |   |
| 8. Feeder fiber |      |     |     |    |     |     |    | 0 |   |
| broken          |      |     |     |    |     |     |    | 0 |   |
| 9. Unknown root |      |     |     |    |     |     |    |   | 0 |
| cause           |      |     |     |    |     |     |    |   | U |

 Machine learning allows tuning of diagnosis decisions, but only in a few % of cases

- E.g. a « loss of frame » alarm results more consistently from an attenuated drop fiber than from a broken drop fiber
- Some cases lead to clearer decisions, although being uncertain from the expert viewpoint

## Summary and final remarks

### Summary and final remarks

## Implementation of probabilistic modeling and machine learning for fault diagnosis in FTTH GPON networks

- Design and implementation of a 3-layer probabilistic model based on Bayesian networks
- Application to GPON fault diagnosis  $\rightarrow$  PANDA tool
- Improvement of the model parameters through expectation maximization
- The PANDA approach handles unforeseen fault configurations, non-deterministic fault propagation and is robust to missing data

### Artificial intelligence is no magic stick, but can be of great help for fault diagnosis

- Operational teams need easy-to-maintain tools, but also need to understand tool decisions
  - > "Black box" approaches only-based on machine learning have to be avoided
- Model-based approaches tuned by machine learning are a promising intermediate path

### Prospects

- Leverage on a **labelled** data set allowing detailed performance assessment compared with RBE system
- Investigate unsupervised approaches on non-labelled data sets (e.g. clustering of similar cases difficult to diagnose by a human expert) and semi-supervised learning on partly-labelled data sets

19 Unrestricted



orange<sup>™</sup>

# Q & A



orange<sup>™</sup>

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

47