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Introduction: fault diagnosis of FTTH networks



Introduction

Fault diagnosis of FTTH networks

Fault diagnosis
« Afault is a failure explaining a set of symptoms (warnings, alarms, other faults)
» Afault degrades the QoS or leads to service unavailability

» Fault diagnosis correlates observed symptoms so as to determine their root cause(s)
» It leverages on monitoring data collected by operator’s hot line: counters, powers, temperatures, ...

Diagnosis example on a Gigabit capable Passive Optical Network (GPON)

* An « upstream Loss of Signal » alarm at the OLT (Optical Line Termination) for ONT #3
(Optical Network Termination)

» Intermediate causes: low received power at the OLT, low transmitted power at ONT #3

* Root cause: faulty power supply of ONT #3

A tool typically used: the rule-based expert system (RBE)
Set of expert rules (IF <conditions> THEN <actions>) covering typical fault configurations
(e.g. a few tens of rules for GPON)

« Efficient for known issues

» Specialized and deterministic rules: impossible to cover all fault configurations, difficult to
maintain
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Some alternative approaches to rule-based expert systems

Model-based expert systems

« Explicit modeling of the network structure and P Py
behavior (alarm propagation and correlation) |

 Example: dependency causal graph -2
deterministic reasoning algorithm

© Scalability, ability to deal with unknown issues,
comprehensibility :‘

® Modeling complexity, static model

Machine learning techniques

* Inductive capabilities derived from supervised
or non-supervised training

« Example: multi-layer artificial neural networks

© Scalability, large induction capabilities

® Blind method, « black box »
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Objectives of this work

Improve performance of FTTH GPON fault diagnosis

» Allow easier maintenance of diagnosis tool

 Decrease the number of non-identified faults, even when some
data is missing

« Maintain or increase diagnosis reliability

Diagnosis approach
* Probabilistic version of dependency causal graphs: Bayesian Bayesian network example

networks « X, are random variables
« Handles non-deterministic fault propagation and edges represent
 Robust to missing data dependencies .

] P(X; = k| parents(Xj) =/ )

* Modular 3-layered mpdel. _ «  Factorization of joint

» Layer 1 for modeling dependencies between components probability:
» Layer 2 for modeling dependencies inside components P(X1,X2,X3,X4,X5,X6) =
» Layer 3 for Bayesian inference of the whole system P(X6 | X5) * P(X5 | X2,X3) *

« The model parameters can be tuned through machine learning  P(X4 [ X1,X2) * P(X2 | X1)
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PANDA: Probabilistic tool for GPON-FTTH
Access Network self-DiAgnosis



System under study: Gigabit capable Passive Optical Network
(GPON)

FTTH infrastructure

» Optical Line Termination
(OLT): Central office
equipment

» Optical Network Unit /
Termination (ONU or ONT):
Customer side equipment

» Optical Distribution Network
(ODN): distribute optical Network
power from feeder fiberto >
drop fibers thanks to
splitters

The ODN is typically

composed of several

splitter stages
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Example of the 3 layered generic model

Layer 3*

» Junction tree representation
derived from the combination
of layers 1 & 2

» Used for Bayesian inference
leading to identification of roo
causes

Layer 2 T
« Bayesian networks modeling
local fault propagation inside ‘\?
each component N, (e.g. a
given ONT) \‘ )
=1, v3
al Details on how to

Layer 1 B, = L,N,

« Network topology as well as build Layer 3 from
distributed fault propagation Layers 1 & 2 are
between linked components g'tveln 'J” S. R-I T?mbo

; et al., Journal o
(e.g. ONT-OLT) ’ . Network and Systems
10 Unrestricted E, =L,N, E. — LIV E,= LN, Management pp 1
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PANDA: Probabilistic tool for GPON-FTTH Access Network
self-DiAgnosis
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How PANDA works

Diagnosis computation
Collected facts are injected in PANDA as evidence nodes
Unobserved nodes are inferred based on model parameters
Diagnosis = the most probable states of root nodes consistent with evidence nodes

Result example

The root cause node « Feeder Fiber » shows a « AT » (Attenuation). The calculated belief
= 97 %

FiberT [OK, AT, BR] | [0,02, 0.97, 0,01]
(feeder fiber)
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PANDA V1.0 — no training



PANDA V1.0: model parameters roughly guessed by the expert, no training
Confusion matrix between RBE (rows) and PANDA V1.0 (columns) over
10611 cases

v" PANDA always
gives a
conclusion

v" When the RBE
system gives a
conclusion, both
tools are aligned
in 99% of the
cases

v 24% of non-
identified faults
for RBE system

v BUT PANDA
scope is smaller
(FTTH only)




PANDA V2.0 — model parameters improved by
machine learning



PANDA V1.0 -2 V2.0

Tuning of model parameters with machine learning

Principle

« in PANDA V1.0, dependencies P(X, = k | parents(X;) =/ ) in the Bayesian networks have
been roughly estimated by a human expert

» Dependencies are model parameters that can be estimated by maximizing the likelihood of
a training dataset with respect to model parameters

« Maximum Likelihood Estimation has to be adapted in case of incomplete data, because
the number of terms of the likelihood of observations is exponential with the number of
missing variables = Expectation Maximization

» Expectation Maximization is an iterative algorithm composed of 2 steps per iteration:
> E step: estimation of the expectation of the dataset likelihood under current model

parameters, by inferring missing variables in the Bayesian networks

» M step: maximization of this expectation to derive new model parameters

Implementation

« EM algorithm run on PANDA model parameters, starting from V1.0 parameters, based on a
training data set of 5121 diagnosis cases. Convergence after ~7 iterations

. Details given in S. R. Tembo et al., IWCMC, Paphos, 2016, pp. 369-376
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PANDA V2.0: machine learned model parameters (training data set of 5121 cases)
Confusion matrix between V1.0 (rows) and V2.0 (columns) over 5490 test cases

4030 | A : i 2 v" Machine learning

[0\ allows tuning of

183 diagnosig decisions,
but only in a few %

of cases

56 v E.g. a «loss of
frame » alarm
results more
consistently from an
i attenuated drop

fiber than from a
“49l 32 broken drop fiber

~ 0 v" Some cases lead to
clearer decisions,

0 although being
uncertain from the
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Summary and final remarks
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Summary and final remarks

Implementation of probabilistic modeling and machine learning for fault diagnosis in
FTTH GPON networks

+ Design and implementation of a 3-layer probabilistic model based on Bayesian networks
* Application to GPON fault diagnosis = PANDA tool
* Improvement of the model parameters through expectation maximization

+ The PANDA approach handles unforeseen fault configurations, non-deterministic fault propagation and
is robust to missing data

Artificial intelligence is no magic stick, but can be of great help for fault diagnosis
+ Operational teams need easy-to-maintain tools, but also need to understand tool decisions
> “Black box” approaches only-based on machine learning have to be avoided

* Model-based approaches tuned by machine learning are a promising intermediate path

Prospects
» Leverage on a labelled data set allowing detailed performance assessment compared with RBE system

» Investigate unsupervised approaches on non-labelled data sets (e.g. clustering of similar cases difficult

to diagnose by a human expert) and semi-supervised learning on partly-labelled data sets
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