On Resource Negotiation in Application-aware Networks

Marco Savi, Antonio Marsico, Domenico Siracusa, Elio Salvadori
Fondazione Bruno Kessler
CREATE-NET Research Center
Trento – Italy

ONDM 2017
How today transport networks work

Problem: Transport networks should cater to the *heterogeneous requirements of modern applications* (bandwidth, latency, availability, etc.)
A step further: Application-Centric Networking

Application-Centric Transport Networks

Application layer

Grooming layer

Application-aware transport layer

- Low bandwidth
- App-class requirements

- Medium / High bandwidth
- App specific requirements

• Applies to multi-layer networks
• Traffic is differentiated according to application requirements
Application-Aware Service Provisioning

- No application requirement *violation* for application traffic accepted in the network
- If impossible to meet the requirements, an application *service request* is a-priori *blocked*
- Service requests are provisioned in an *application-aware* way
Performance of an Application-Aware Service Provisioning Algorithm [1]

How can the network reduce blocking?
- By unilaterally degrading guaranteed requirements
- By negotiating requirements with the application

Bandwidth, Latency, Availability requirements guaranteed

Bandwidth = \{1,10,100\} Gbps uniform
Latency = \{10,\infty\} ms uniform
Availability = \{99.75,0\} % uniform

Unilateral Degradation of Requirements

• Instead of blocking a service request, the network may unilaterally decide to degrade the requirements.

• In the state-of-the-art [2][3], only the bandwidth requirement is degraded.

• The application is provisioned an uncontrolled degraded service.

• It can be extended to multiple requirements.

Negotiation of Requirements

• If the Service Request is blocked, the application may be flexible
 • It can accept some degraded requirements for the Service Request

• Steps for negotiation
 1. The Application informs the network of which requirements can be negotiated
 2. The network offers several alternative solutions with degraded parameters
 3. The Application autonomously chooses the best one

• The negotiation offers the possibility to find an agreement between applications and networks on the provisioned service
Negotiation of Requirements

Challenges:

• *Interaction between applications and networks*
 • Definition of northbound interfaces (e.g., intent-based networking)
 • Designing of interaction mechanisms

• *Network-side algorithms*
 • Computation of the alternative solutions based on the network status

• *Application-side algorithms*
 • Applications need to perform decisions (How to chose the *best* alternative solution? What does *best* mean?)
 • *It could eventually be automated*
Negotiation of Requirements
Our implementation

Network side

- The *Application-Aware Provisioning Algorithm* finds M alternative solutions by applying a degradation to all the combinations of negotiable requirements.

- Example: bandwidth b and latency l
 - Degrade b: solution with $\bar{b} < b$ found
 - Degrade l: solution with $\bar{l} > l$ found
 - Degrade b and l: solution with $\bar{b} < b$ and $\bar{l} > l$ found
Negotiation of Requirements
Our implementation

Application side

• The application stores all the least-acceptable values for the negotiable parameters (e.g. l_{\max}, b_{\min})

• Alternative Solution Selection Algorithm
 1. Discard all the alternative solution not meeting any of the least-acceptable values (e.g. $l > l_{\max}$ and/or $b < b_{\min}$)
 2. The best solution, among the remaining, is the one with minimum normalized euclidean distance from the original requirements
 3. In case there is no remaining solution, the service request is blocked
Preliminary Performance Evaluation

Blocking Probability

1. Higher benefits (in relative terms) for low traffic load
2. Blocking probability can be more than halved, with Max Allowed Degradation=40%!

Both Bandwidth and Latency are always negotiable. Least-acceptable value for both is 10% or 40% less than the value specified in the service request.

Bandwidth = \{1,2,5,10\} Gbps uniform
Latency = 10 ms
Telefonica Traffic Matrix

Telefonica reference network: 30 optical nodes, 56 optical links, 14 IP/MPLS nodes
Service requests: M/M/∞ queue
Preliminary Performance Evaluation
Service Degradation (Bandwidth and Latency)

1. Negotiated service requests experience an **Average Degradation** for both bandwidth and latency always much lower than the **Max Allowed Degradation**
2. **Latency** experiences a small degradation

Considers only the service requests that enter the negotiation phase

Telefonica reference network: 30 optical nodes, 56 optical links, 14 IP/MPLS nodes

Telefonica Traffic Matrix

- Bandwidth = \{1,2,5,10\} Gbps uniform
- Latency = 10 ms

Service requests: M/M/∞ queue
More on Negotiation

• Negotiation is not only performed to
 • Reduce blocking probability
 • Offer a controlled service degradation

but it can be used to satisfy both network and application utility

• Preliminary scouting: two possible schemes
 • Price/Service Trade-off Negotiation
 • Auction
Price/Service Trade-Off Negotiation

- An applications with specific requirements asks for a service request
- Networks may
 - Propose a price for this service request
 - Offer several alternatives with different requirements and prices
 - It can help in saving resources for other applications
- The application chooses the alternative with best price/service trade-off (utility)
 - It evaluates a price function by only considering the bandwidth requirement
- Could be extended to consider multiple application requirements

Auction

• Applications can bid a price for a service request (SR)
• The Network evaluates all the bids in batch
 • It may allocate the ones maximizing a particular optimization function
• Amazon EC2[5] and Google Cloud[6] offer this service to customers for the instantiation of Virtual Machine (VM) instances
 • VMs are instantiated with discounted prices
 • This type of instances can be disrupted at any time

Conclusions

• Applications come with an heterogeneous set of specific requirements to be satisfied during provisioning

• Network may not have resources to allocate some requests

• Negotiation provides an opportunity to find a compromise between apps needs and availability of resources
 • Demonstrated reduced blocking probability against a service degradation smaller than the maximum allowed one

• Negotiation may take place to maximize utility of both customers and service providers also when resources are enough
Thanks!

• Questions?

• Pls refer to: Marco msavi@fbk.eu or Elio esalvadori@fbk.eu