

On Resource Negotiation in Application-aware Networks

Marco Savi, Antonio Marsico, Domenico Siracusa, Elio Salvadori Fondazione Bruno Kessler CREATE-NET Research Center Trento – Italy

ONDM 2017

How today transport networks work

Problem: Transport networks should cater to the *heterogeneous requirements of modern applications* (bandwidth, latency, availability, etc.)

A step further: Application-Centric Networking

Application-Centric Transport Networks

- Applies to multi-layer networks
- Traffic is differentiated according to application requirements

Application-Aware Service Provisioning

- No application requirement violation for application traffic accepted in the network
- If impossible to meet the requirements, an application service request is a-priori blocked
- Service requests are provisioned in an application-aware way

Performance of an Application-Aware Service Provisioning Algorithm [1]

[1] M. Savi et al., "An Application-Aware Multi-Layer Service Provisioning Algorithm based on Auxiliary Graphs," Proc. of OFC, 2017

Unilateral Degradation of Requirements

- Instead of blocking a service request, the network may unilaterally decide to degrade the requirements
- In the state-of-the-art [2][3], only the bandwidth requirement is degraded
 - [2] proposes a priority-based service provisioning in multi-layer networks
 - [3] proposes a multi-path routing algorithm for the provisions of bandwidth-degraded reliable services
- The application is provisioned an uncontrolled degraded service
- It can be extended to multiple requirements

[2] Z. Zhong et al., "On QoS-Assured Degraded Provisioning in Service-Differentiated Multi-Layer Elastic Optical Networks," Proc. of IEEE GLOBECOM, 2016

[3] H. Y. Chang, "A Multipath Routing Algorithm for Degraded-Bandwidth Services under Availability Constraint in WDM Networks," Proc. of IEEE WAINA 2012

Negotiation of Requirements

- If the Service Request is blocked, the application may be *flexible*
 - It can accept some degraded requirements for the Service Request
- Steps for negotiation
 - 1. The Application informs the network of which requirements can be negotiated
 - 2. The network offers several alternative solutions with degraded parameters
 - 3. The Application autonomously chooses the *best* one
- The negotiation offers the possibility to find an agreement between applications and networks on the provisioned service

Negotiation of Requirements

Challenges:

- Interaction between applications and networks
 - Definition of northbound interfaces (e.g., intent-based networking)
 - Designing of interaction mechanisms
- Network-side algorithms
 - Computation of the alternative solutions based on the network status
- Application-side algorithms
 - Applications need to perform decisions (How to chose the *best* alternative solution? What does *best* mean?)
 - It could eventually be automated

Negotiation of Requirements Our implementation

Network side

- The Application-Aware Provisioning Algorithm finds M alternative solutions by <u>applying a degradation</u> to all the combinations of negotiable requirements
- Example: bandwidth b and latency l
 - Degrade b: solution with $\overline{b} < b$ found
 - Degrade l: solution with $\overline{l} > l$ found
 - Degrade *b* and *l*: solution with $\overline{\bar{b}} < b$ and $\overline{\bar{l}} > l$ found

Negotiation of Requirements Our implementation

Application side

- The application stores all the leastacceptable values for the negotiable parameters (e.g. l_{max} , b_{min})
- Alternative Solution Selection Algorithm
 - 1. Discard all the alternative solution not meeting any of the leastacceptable values (e.g. $l > l_{max}$ and/or $b < b_{min}$)
 - 2. The *best* solution, among the remaining, is the one with minimum *normalized euclidean distance* from the original requirements
 - 3. In case there is no remaining solution, the service request is *blocked*

Preliminary Performance Evaluation Blocking Probability

Preliminary Performance Evaluation Service Degradation (Bandwidth and Latency)

More on Negotiation

- Negotiation is not only performed to
 - Reduce blocking probability
 - Offer a controlled service degradation

but it can be used to satisfy both network and application utility

- Preliminary scouting: two possible schemes
 - Price/Service Trade-off Negotiation
 - Auction

Applications," IEEE Journal on Selected Areas in Communication, vol.18 n.12, pp. 2514-2529 2000

Auction

- Applications can bid a price for a service request (SR)
- The Network evaluates all the bids in batch
 - It may allocate the ones maximizing a particular optimization function
- Amazon EC2[5] and Google Cloud[6] offer this service to customers for the instantiation of Virtual Machine (VM) instances
 - VMs are instantiated with discounted prices
 - This type of instances can be disrupted at any time

[5] Amazon EC2 Spot Instances, <u>https://aws.amazon.com/ec2/spot/</u>
[6] Google Preemptible Virtual Machines, <u>https://cloud.google.com/preemptible-vms/</u>

Conclusions

- Applications come with an heterogeneous set of specific requirements to be satisfied during provisioning
- Network may not have resources to allocate some requests
- Negotiation provides an opportunity to find a compromise between apps needs and availability of resources
 - Demonstrated reduced blocking probability against a service degradation smaller than the maximum allowed one
- Negotiation may take place to maximize utility of both customers and service providers also when resources are enough

Thanks!

- Questions?
- Pls refer to: Marco msavi@fbk.eu or Elio esalvadori@fbk.eu