Hybrid Optical Packet and Circuit Switching in Spatial Division Multiplexing Fiber Networks

R. S. Luis, H. Furukawa, G. Rademacher, B. J. Puttnam, and N. Wada

Photonic Network System Laboratory - National Institute of Information and Communications Technology - Japan

rluis@nict.go.jp

Contents

SDM Networks Using Homogeneous MCFs

 Integrated OPS and OCS SDM Networks

• Experimental Demonstration

Conclusions

SDM Networks

SDM Networks

SDM Networks

SDM Networks Using Homogeneous MCFs

SDM Networks Using Homogeneous MCFs NC

SDM Networks Using Homogeneous MCFs

SDM Networks Using Homogeneous MCFs

Homogeneous Multi-Core Fibers

Light on each core is "uncoupled" from the other cores

- Residual coupling yields inter-core crosstalk
- Propagation characteristics are similar amongst all cores
- Residual differences in group velocity yield inter-core skew
- Simple transition from singlecore to multi-core fiber systems
- Nearly time-aligned Spatial Super-Channels
- Simple shared DSP amongst spatial channels
- Spatial modulation formats and Spatial coding
- Self-Homodyne Detection

SDM

DSP

Assumptions:

- Crosstalk behaves as an AWGN with power proportional to the signal power (high symbol rates and/or long distances and signals w/ null carrier)
- Average crosstalk depends only on the fiber geometry
- Similar launch power on all fiber cores
- Linear transmission
- Spectral Efficiency:

$$SE_{\text{core } k} = \log_2 \left[1 + \left(SNR^{-1} + XT_k \right)^{-1} \right]$$

$$SE = \sum_k SE_{\text{core } k}$$
Crosstalk - Ratio between avg. crosstalk and signal powers

SNR in the absence of crosstalk

Considered core arrangements to maximize core pitch²

¹ B. J. Puttnam, et al., ECOC, PDP.3.1, 2015 ² E. Specht, http://www.packomania.com

³ F. Ye, et al., Optics Express 22(19), 23007, 2014

10

N/ICT

260 µm

ΝΊCΤ

SDM Networks Using Homogeneous MCFs NC

5/16/17

SDM Networks Using Homogeneous MCFs

Architecture on Demand experimental demonstration

Integrated OPS and OCS SDM Networks

- Optical packet switched (OPS) and Optical circuit switched (OCS) links can be flexibly established
- OCS Spatial super channels (SSC) provide ultra-high capacity
- OPS-SSC provide granularity
- Arbitrary combinations of spatial channels and wavelengths are possible
- Joint spatial circuit and/or packet switching may reduce hardware requirements

Integrated OPS and OCS SDM Networks

- Optical packet switched (OPS) and Optical circuit switched (OCS) links can be flexibly established
- OCS Spatial super channels (SSC) provide ultra-high capacity
- OPS-SSC provide granularity
- Arbitrary combinations of spatial channels and wavelengths are possible
- Joint spatial circuit and/or packet switching may reduce hardware requirements

Optical Packet Switch

OCS

100G OTN

H. Furukawa, et.al, P.4.16, ECOC2015.

- Electro-absorption switches
- 100 Gb/s multi-wavelength packets
- Optical-Label Processing
- Burst-mode amplification

Joint Spatial Optical Packet Switch

preamble h preamble	eader payload payload payload		Wavelength			<i>M</i> -Joint Buffer <i>N</i> x 1	
preamble	payload	Ľ		:		•	
preamble	payload	Ĩ		: 🔻		•	
preamble	payload	Ľ		M-Joint Switch		M- Joint Buffer	
preamble	payload	1				N x 1	
preamble	payload	1		1 x <i>N</i>			
preamble	payload	5		• × M	7		
preamble	payload		Space Space	1 x <i>N</i>	1		
Time							

- Electro-absorption switches
- 400 Gb/s multi-wavelength spatial packets
- Optical-Label Processing Core 1
- Burst-mode amplification

- 19-Core 30 km MCF
- 19-Core MC-EDFA

- 1 Tb/s OCS-SSC (2 cores x 3 wavelengths)
- PDM-16QAM at 24.5
 Gbaud
- Ultra-wideband frequency comb generator (up to 400 wavelengths)

- 400 Gb/s OPS-SSC
- Emulated Joint Packet Switching

Conclusion

- Addressed the physical aspects of the use of homogeneous multi-core fibers in SDM networks
- Made the case for a hybrid spatial packet and circuit switching architecture for SDM networks
- Experimentally demonstrated a SSC-OPS + SSC OCS system using joint optical packet switching, multi-core fiber and multi-core amplification
- Future work: Including joint spatial circuit switching; network management and control; higher throughput

Acknowledgement

The authors acknowledge the efforts of the NICT technical staff on the experimental demonstration

- Takeshi Makino
- Takahiro Hashimoto
- Michie Kurihara

Thanks for your attention!

Questions?