

Wrocław University of Science and Technology

Selection of Spectral-Spatial Channels in SDM Flexgrid Optical Networks

Piotr Lechowicz, <u>Krzysztof Walkowiak</u> Wroclaw University of Science and Technology Mirosław Klinkowski ENGINE Centre and National Institute of Telecommunications in Warsaw

May 16, 2017, Budapest

Agenda

- Introduction and Motivation
- Optimization Problem
- Algorithm
- Results
- Conclusions

Agenda

Introduction and Motivation

- Optimization Problem
- Algorithm
- Results
- Conclusions

Internet Capacity Crunch – Why???

Bandwidth-hungry applications/services:

- HDTV, video streaming, 4K
- Big data processing
- Game streaming

• Increasing number of users/devices:

- Internet reaches almost every person on Earth
- Every user uses many devices (smartphone, iPad, PC, TV, etc)
- Internet of Things (IoT) the number of devices connected to the Internet will grow from 5 billion now up to 50 billion in 2020
- Evolution access network technologies:
 - FTTx
 - LTE 300 Mbps
 - 5G 10Gbps

Cisco Traffic Forecasts

- The **Cisco Global Cloud Index (GCI)** forecasts data center and cloud traffic and related trends
- The Cisco Visual Networking Index (VNI) is the company's ongoing effort to forecast and analyze the growth and use of IP networks worldwide
- **CAGR** (Compound Annual Growth Rate)

Predicted CAGR

IP Traffic

- 2013 VNI report for years 2012-2017 report, CAGR=23%
- 2014 VNI report for years 2013-2018 report, CAGR=21%
- 2015 VNI report for years 2014-2019 report, CAGR=23%
- 2016 VNI report for years 2015-2020 report, CAGR=22%
- Content Delivery Network (CDN) Traffic
- 2013 VNI report for years 2012-2017 report, CAGR=34%
- 2014 VNI report for years 2013-2018 report, CAGR=34%
- 2015 VNI report for years 2014-2019 report, CAGR=38%
- 2016 VNI report for years 2015-2020 report, CAGR=34%

S.

Wrocław University of Science and Technology

CAGR 30%

30 (x2619)

Wrocław University of Science and Technology

K. Walkowiak, "Selection of Spectral-Spatial Channels in

20

(x190)

How to overcome the capacity crunch???

- Deliver network traffic in a smart way (CDN, anycasting, multicasting, etc.)
- Limit network traffic (blocking P2P traffic, throttling video traffic, etc.)
- Update backbone (optical) networks

Evolution of Optical Networks

- **Currently**, most of the **transport optical networks use WDM** (Wavelength Division Multiplexing) technology with fixed-grid
- Possible ways to increase capacity of optical networks:
 - Elastic Optical Networks (EONs) with higher flexibility in the spectrum domain (flex-grid)
 - Space-Division Multiplexing (SDM) with higher flexibility in the space domain

SDM

- The key idea behind SDM is to use the space domain, in which the spatial resources can be flexibly assigned to different traffic demands
- SDM allows to increase the overall transmission capacity in a cost-effective manner by integrating to a certain extent multiple transmission systems in parallel

SDM Technologies

- Fiber bundle standard fibers, often deployed in bundles (to offset the costs of digging trenches)
- Multicore fiber fibers with multiple cores within a single fiber cladding, forming multicore fibers (MCFs), offer an increase in available bandwidth equal to their core count
- Multimode fiber fibers with a single, large core, which can carry additional optically-guided spatial modes, few-mode fibers (FMFs) offer a potential capacity multiplier equal to the mode count

SDM Scenarios

[Spectral dimension/spatial dimension]

- Flexgrid/Single parallel transmission in EON network
- Flexgrid/Fixed SSChs can be transmitted using different SpRcs, however, within the same spectrum segment
- **Flexgrid/Flexible** full spectral and spatial flexibility in forming SSChs is allowed. Although this scenario enables best resource utilization, it may lead to fragmentation of spectrum

Flexgrid/Single Scenario

Independent switching of spatial mode and wavelength channel (i.e., space–wavelength granularity)

Flex-grid/Fixed Scenario

Wavelength switching across all spatial modes (wavelength granularity), also called spectral switching or joint switching

Flex-grid/Flexible Scenario

Independent switching or wavelength switching across spatial mode subgroups (fractional space– full wavelength granularity), sometimes called fractional joint switching or grouped spectral switching

Pros and Cons of SDM

- Increase the overall transmission capacity of optical networks beyond the limits of WDM and EON networks in a cost-effective manner by integrating the SDM equipment (transceivers, switching devices) to enable to a certain extent realizing multiple transmission systems in parallel
- ③ All advances of EONs can be used in SDM networks
- New fibers are required for multi-core or multi-mode transmissions
- Key network components for SDM (amplifiers, multiplexers, transceivers) are under development
- ⁽²⁾ Crosstalks between cores/modes can limit transmission range

Goal and Novelty

- The main **goals** of this work are :
 - To develop an effective heuristic algorithm for the Flexible scenario
 - To examine main characteristics of the Flexible scenario in terms of the spectrum usage

Agenda

- Introduction and Motivation
- Optimization Problem
- Algorithm
- Results
- Conclusions

Routing and Spectrum Allocation (RSA)

The basic optimization problem in EONs is RSA (Routing and Spectrum Allocation) that consists in selection for every demand of a routing path and spectrum with the following constraints:

- Continuity constraint states that in an absence of spectrum converters, the demand must use exactly the same spectrum slots (optical corridor) in all links included in the routing path
- Contiguity constraint requires that slices assigned to a particular demand must be adjacent (contiguous)

Distance-Adaptive Transmission

- In SDM networks based on the concept of EONs, it is possible to use various modulation formats, e.g., BPSK, QPSK, 8-QAM, 16-QAM
- These modulation formats provide some trade-off between spectrum efficiency and transmission range, i.e., more spectrum effective modulation formats provide shorter transmission range
- A reasonable approach is a distance-adaptive transmission (DAT), i.e., a modulation format for a particular demand is preselected based only on the transmission distance

DAT - Example

Distance-Adaptive Modulation Formats for Bit-Rate 400 Gb/s

	BPSK	QPSK	8-QAM	16-QAM
#transceivers	8	4	3	2
#slices	25	13	10	7
Range [km]	6 300	3 500	1 200	600

Path length 900 km -> 8-QAM, 3 transceivers, 10 slices Path length 1800 km -> QPSK, 4 transceivers, 13 slices

Demand Provisioning in SDM

- Demand on the selected path is assigned to a *spectral-spatial channel* (SSCh) using spectral resources that can be allocated on more than one SpRc
- In consequence, the **number of possible (SSChs**) in SDM networks is much **larger** comparing channels in **EONs**
- The basic optimization problem in SDM networks is RSSA (Routing, Space and Spectrum Allocation)

[Walkowiak K., Lechowicz P., Klinkowski M., Sen A., ILP Modeling of Flexgrid SDM Optical Networks, Proceedings of the 17th International Telecommunications Network Strategy and Planning Symposium **Networks 2016**, (Montreal, Canada, September 26-28, 2016), 2016]

SDM – Example (1)

- Demand bit-rate is **1 Tbps**
- Path length is 3000 km
- According to DAT, the selected MF is **QPSK**
- Since QPSK supports 100 Gbps per one transceiver, we need
 10 transceivers (=1 Tbps/100 Gbps) and 30 slices of 12.5 GHz

SDM – Example (2)

30 slices required to etablish 1 Tbps demand using QPSK on 3000 km path

Wrocław University of Science and Technology

ILP Model

objective

min $\sum_{s \in S} y_s$

constraints

$$\begin{split} \sum_{p \in P(d)} \sum_{c \in C(d,p)} x_{dpc} &= 1 & d \in D \\ \sum_{d \in D} \sum_{p \in P(d)} \sum_{c \in C(d,p)} \gamma_{dpcsk} \delta_{edp} x_{dpc} &\leq y_{esk} & e \in E, \ k \in K(e), \ s \in S \\ \sum_{k \in K(e)} y_{esk} &\leq |K(e)| y_{es} & e \in E, \ s \in S \\ \sum_{e \in E} y_{es} &\leq |E| y_s & s \in S \end{split}$$

Wrocław University of Science and Technology

Agenda

- Introduction and Motivation
- Optimization Problem
- Algorithm
- Results
- Conclusions

Greedy Algorithm

Require: set of demands *D*, sets *P*(*d*) with candidate paths for each demand , SSCh comparing strategy *comp*, sorting type *sort*

1 **function** *Greedy*(*D*, *P*, *comp*, *sort*)

- 2 D := sortDemands(D, sort)
- 3 **for** *i* := 0 **to** |*D*| **do**
- $4 \qquad d:=D[i]$
- 5 [p, ssch] := FPCSpectrum(P(d); comp)
- 6 allocate(*p*, *ssch*)

Tuning - Sorting

As sort, we consider one of the following metrics:

- **Slices** the required number of slices on the shortest path
- **Distance** the length (in km) of the demand's shortest path
- **Hop count** the number of links on the shortest path

Tuning – SSCh Selection

- Lowest Start (LS) the SSCh of the lowest starting slice
- Lowest End (LE) the SSCh of the lowest ending slice index is selected
- Penalty (PEN) the SSCh with the lowest penalty $\Theta_1(c)$ is selected: $\Theta_1(c) = \alpha (guardband(c) + rounding(c)) + end(c)$
- Demands-Varying Penalty (DVP) the SSCh with the lowest penalty $\Theta_2(c)$ is selected:

 $\Theta_2(c) = \alpha \cdot (1 - \tau) \cdot (guardband(c) + rounding(c)) + (1 - \alpha) \cdot \tau \cdot end(c)$

- end(SSCh) returns an index of the highest slice used by SSCh
- rounding(SSCh) returns the amount of slices wasted for rounding
- guardband(SSCh) returns the amount of slices used for guardbands
- au is equal to the ratio of currently allocated demands to all demands

Agenda

- Introduction and Motivation
- Optimization Problem
- Algorithm
- Results
- Conclusions

Assumptions

- Transceivers operate at fixed baud rate of 28 GBaud and each transceiver transmits/receives an optical channel (optical carrier) that occupies 3 slices of 12.5 GHz
- A fixed **guardband** defined as 1 slice of 12.5 GHz
- Four modulation formats: BPSK, QPSK, 8-QAM, and 16-QAM with range 6300 km, 3500 km, 1200 km and 600 km, with bit-rate: 50 Gbps, 100 Gbps, 150 Gbps and 200 Gbps, respectively
- Each **demand** has the bit-rate selected at random from range 50 Gbps to 1 Tbps with 50 Gbps granularity
- Number of **candidate paths** for each demand is 30

Wrocław University of Science and Technology

Tuning – Number of Slices

	Sorting			
Algorithm	Slice	Distance	Hop Count	
LS	1066.1	1125.8	1079.5	
LE	1300.8	1367.3	1331.3	
PEN(α=0.2)	1300.1	1366.7	1335.5	
PEN(α=0.5)	1301.4	1365.3	1332.6	
PEN(α=0.8)	1264.1	1323	1288.1	
DVP(α=0.2)	1236.7	1319	1278.6	
DVP(α=0.5)	1202.3	1274.1	1230.6	
DVP(α=0.8)	1159	1217.5	1157.7	

CPLEX vs. Heuristic for Euro28

		Number of slices		Execution time	
<i>P</i> (d)	D	CPLEX	Greedy	CPLEX	Greedy
4	20	28	28	260s	<1ms
4	30	31	31	1h	<1ms
4	40	34	34	1h	<1ms
4	50	Out of Memory	58	-	<1ms
2	20	28	28	60s	<1ms
2	30	25	31	1h	<1ms
2	40	34	34	1h	<1ms
2	50	Out of Memory	58	-	<1ms

Wrocław University of Science and Technology

Spectrum usage for various types of demands – network Euro28 and 1 Pbps traffic

Wrocław University of Science and Technology

Spectrum usage for various types of demands – network DT14 and 1 Pbps traffic

Wrocław University of Science and Technology

Spectrum usage for various types of demands – network Euro28 and 1 Pbps traffic

Wrocław University of Science and Technology

Spectrum usage for various types of demands – network DT14 and 1 Pbps traffic

Wrocław University of Science and Technology

Average execution time of the heuristic (in seconds) as a function of the number of SpRcs for, 1 Pbps traffic

	Number of spatial resources				
Network	3	6	9	12	15
Euro28	2	11	63	325	1691
DT14	1	7	28	133	621

Agenda

- Introduction and Motivation
- Optimization Problem
- Algorithm
- Results
- Conclusions

Conclusions

- A greedy algorithm with different strategies for sorting of demands and allocation of spectral-spatial channels provides results close to optimal ones
- Spectrum usage in examined topologies decrease almost proportionally with the increase of SpRcs
- The Flexible scenario yields similar results the Single scenario.
 Flexible, despite its capability to form SSChs in both domains, most of the time selects SSChs which use only one SpRc
- The **Flexible** scenario is **very complex** in terms of SSChs number, what results in **high execution time** of simple heuristic
- Future work includes development of **heuristic and metaheuristic** methods that enable solving **large problem instances**

Thank you for attention

Krzysztof.Walkowiak@pwr.edu.pl

Wrocław University of Science and Technology