Selection of Spectral-Spatial Channels in SDM Flexgrid Optical Networks

Piotr Lechowicz, Krzysztof Walkowiak
Wrocław University of Science and Technology
Mirosław Klinkowski
ENGINE Centre and National Institute of Telecommunications in Warsaw

May 16, 2017, Budapest
Agenda

• Introduction and Motivation
• Optimization Problem
• Algorithm
• Results
• Conclusions
Agenda

• **Introduction and Motivation**
• Optimization Problem
• Algorithm
• Results
• Conclusions
Internet Capacity Crunch – Why???

• **Bandwidth-hungry applications/services:**
 – HDTV, video streaming, 4K
 – Big data processing
 – Game streaming

• **Increasing number of users/devices:**
 – Internet reaches almost every person on Earth
 – Every user uses many devices (smartphone, iPad, PC, TV, etc)
 – Internet of Things (IoT) - the number of devices connected to the Internet will grow from 5 billion now up to 50 billion in 2020

• **Evolution access network technologies:**
 – FTTx
 – LTE 300 Mbps
 – 5G 10Gbps

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Cisco Traffic Forecasts

- The **Cisco Global Cloud Index (GCI)** forecasts data center and cloud traffic and related trends
- The **Cisco Visual Networking Index (VNI)** is the company's ongoing effort to forecast and analyze the growth and use of IP networks worldwide
- **CAGR** (Compound Annual Growth Rate)
Predicted CAGR

IP Traffic
• 2013 VNI report for years 2012-2017 report, CAGR=23%
• 2014 VNI report for years 2013-2018 report, CAGR=21%
• 2015 VNI report for years 2014-2019 report, CAGR=23%
• 2016 VNI report for years 2015-2020 report, CAGR=22%

Content Delivery Network (CDN) Traffic
• 2013 VNI report for years 2012-2017 report, CAGR=34%
• 2014 VNI report for years 2013-2018 report, CAGR=34%
• 2015 VNI report for years 2014-2019 report, CAGR=38%
• 2016 VNI report for years 2015-2020 report, CAGR=34%
CAGR 23%

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
How to overcome the capacity crunch???

- Deliver network traffic in a smart way (CDN, anycasting, multicasting, etc.)
- Limit network traffic (blocking P2P traffic, throttling video traffic, etc.)
- **Update backbone (optical) networks**
Evolution of Optical Networks

• **Currently**, most of the transport optical networks use WDM (Wavelength Division Multiplexing) technology with fixed-grid

• Possible ways to increase capacity of optical networks:

 – **Elastic Optical Networks (EONs)** with higher flexibility in the spectrum domain (flex-grid)

 – **Space-Division Multiplexing (SDM)** with higher flexibility in the space domain

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
The key idea behind SDM is to use the **space domain**, in which the spatial resources can be flexibly assigned to different traffic demands.

- SDM allows to **increase** the overall **transmission capacity in a cost-effective** manner by **integrating** to a certain extent multiple transmission systems in parallel.
SDM Technologies

- **Fiber bundle** – standard fibers, often deployed in bundles (to offset the costs of digging trenches)

- **Multicore fiber** – fibers with multiple cores within a single fiber cladding, forming multicore fibers (MCFs), offer an increase in available bandwidth equal to their core count

- **Multimode fiber** – fibers with a single, large core, which can carry additional optically-guided spatial modes, few-mode fibers (FMFs) offer a potential capacity multiplier equal to the mode count
SDM Scenarios

[Spectral dimension/spatial dimension]

• **Flexgrid/Single** – parallel transmission in EON network

• **Flexgrid/Fixed** – SSChs can be transmitted using different SpRcs, however, within the same spectrum segment

• **Flexgrid/Flexible** – full spectral and spatial flexibility in forming SSChs is allowed. Although this scenario enables best resource utilization, it may lead to fragmentation of spectrum

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid …", ONDM2017
Independent switching of spatial mode and wavelength channel (i.e., space–wavelength granularity)
Wavelength switching across all spatial modes (wavelength granularity), also called spectral switching or joint switching.
Independent switching or **wavelength switching** across spatial mode subgroups (fractional space– full wavelength granularity), sometimes called **fractional joint switching** or **grouped spectral switching**
Pros and Cons of SDM

😊 Increase the overall transmission capacity of optical networks beyond the limits of WDM and EON networks in a cost-effective manner by integrating the SDM equipment (transceivers, switching devices) to enable to a certain extent realizing multiple transmission systems in parallel

😊 All advances of EONs can be used in SDM networks

😊 New fibers are required for multi-core or multi-mode transmissions

😊 Key network components for SDM (amplifiers, multiplexers, transceivers) are under development

😊 Crosstalks between cores/modes can limit transmission range

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Goal and Novelty

• The main goals of this work are:
 – To develop an effective heuristic algorithm for the Flexible scenario
 – To examine main characteristics of the Flexible scenario in terms of the spectrum usage
Agenda

• Introduction and Motivation
• Optimization Problem
• Algorithm
• Results
• Conclusions

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Routing and Spectrum Allocation (RSA)

The basic optimization problem in EONs is RSA (Routing and Spectrum Allocation) that consists in selection for every demand of a routing path and spectrum with the following constraints:

• **Continuity constraint** states that in an absence of spectrum converters, the demand must use exactly the **same spectrum slots (optical corridor)** in all links included in the routing path.

• **Contiguity constraint** requires that slices assigned to a particular demand must be **adjacent (contiguous)**
Distance-Adaptive Transmission

• In SDM networks based on the concept of EONs, it is possible to use **various modulation formats**, e.g., BPSK, QPSK, 8-QAM, 16-QAM

• These modulation formats provide some **trade-off between spectrum efficiency and transmission range**, i.e., more spectrum effective modulation formats provide shorter transmission range

• A reasonable approach is a **distance-adaptive transmission (DAT)**, i.e., a modulation format for a particular demand is preselected based only on the transmission distance
Distance-Adaptive Modulation Formats for Bit-Rate 400 Gb/s

<table>
<thead>
<tr>
<th></th>
<th>BPSK</th>
<th>QPSK</th>
<th>8-QAM</th>
<th>16-QAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#transceivers</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>#slices</td>
<td>25</td>
<td>13</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Range [km]</td>
<td>6300</td>
<td>3500</td>
<td>1200</td>
<td>600</td>
</tr>
</tbody>
</table>

Path length 900 km -> 8-QAM, 3 transceivers, 10 slices

Path length 1800 km -> QPSK, 4 transceivers, 13 slices
Demand Provisioning in SDM

- Demand on the selected path is assigned to a *spectral-spatial channel (SSCh)* using spectral resources that can be allocated on more than one SpRc
- In consequence, the **number of possible** (SSChs) in SDM networks is much **larger** comparing channels in EONs
- The basic optimization problem in SDM networks is **RSSA** (*Routing, Space and Spectrum Allocation*)

SDM – Example (1)

- Demand bit-rate is **1 Tbps**
- Path length is **3000 km**
- According to DAT, the selected MF is **QPSK**
- Since QPSK supports 100 Gbps per one transceiver, we need **10** transceivers (\(=1 \text{Tbps}/100 \text{Gbps}\)) and **30** slices of 12.5 GHz
30 slices required to establish 1 Tbps demand using QPSK on 3000 km path

SSCh on 1 SpRcs
31 = 30 + 1

SSCh on 3 SpRcs
39 = 30 + 6 + 3

SSCh on 6 SpRcs
42 = 30 + 6 + 6
ILP Model

objective
\[
\min \sum_{s \in S} y_s
\]

constraints
\[
\sum_{p \in P(d)} \sum_{c \in C(d,p)} x_{dpc} = 1 \\
\sum_{d \in D} \sum_{p \in P(d)} \sum_{c \in C(d,p)} \gamma_{dpcs} \delta_{edp} x_{dpc} \leq y_{esk} \\
\sum_{k \in K(e)} y_{esk} \leq |K(e)| y_{es} \\
\sum_{e \in E} y_{es} \leq |E| y_s
\]
Agenda

• Introduction and Motivation
• Optimization Problem
• **Algorithm**
• Results
• Conclusions
Greedy Algorithm

Require: set of demands D, sets $P(d)$ with candidate paths for each demand, SSCh comparing strategy \textit{comp}, sorting type \textit{sort}

1 function $\text{Greedy}(D, P, \textit{comp}, \textit{sort})$
2 $D := \text{sortDemands}(D, \textit{sort})$
3 for $i := 0$ to $|D|$ do
4 $d := D[i]$
5 $[p, ssch] := \text{FPCSpectrum}(P(d); \textit{comp})$
6 allocate(p, $ssch$)
Tuning - Sorting

As sort, we consider one of the following metrics:

- **Slices** – the required number of slices on the shortest path
- **Distance** – the length (in km) of the demand’s shortest path
- **Hop count** – the number of links on the shortest path
Tuning – SSCh Selection

- Lowest Start (LS) — the SSCh of the lowest starting slice
- Lowest End (LE) — the SSCh of the lowest ending slice index is selected
- Penalty (PEN) — the SSCh with the lowest penalty $\Theta_1(c)$ is selected:
 $$\Theta_1(c) = \alpha \cdot (guardband(c) + \text{rounding}(c)) + \text{end}(c)$$
- Demands-Varying Penalty (DVP) — the SSCh with the lowest penalty $\Theta_2(c)$ is selected:
 $$\Theta_2(c) = \alpha \cdot (1 - \tau) \cdot (guardband(c) + \text{rounding}(c)) + (1 - \alpha) \cdot \tau \cdot \text{end}(c)$$

- $\text{end}(\text{SSCh})$ returns an index of the highest slice used by SSCh
- $\text{rounding}(\text{SSCh})$ returns the amount of slices wasted for rounding
- $\text{guardband}(\text{SSCh})$ returns the amount of slices used for guardbands
- τ is equal to the ratio of currently allocated demands to all demands
Agenda

• Introduction and Motivation
• Optimization Problem
• Algorithm
• Results
• Conclusions

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Assumptions

• Transceivers operate at fixed baud rate of 28 GBaud and each transceiver transmits/receives an optical channel (optical carrier) that occupies 3 slices of 12.5 GHz

• A fixed guardband defined as 1 slice of 12.5 GHz

• Four modulation formats: BPSK, QPSK, 8-QAM, and 16-QAM with range 6300 km, 3500 km, 1200 km and 600 km, with bit-rate: 50 Gbps, 100 Gbps, 150 Gbps and 200 Gbps, respectively

• Each demand has the bit-rate selected at random from range 50 Gbps to 1 Tbps with 50 Gbps granularity

• Number of candidate paths for each demand is 30
K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Tuning – Number of Slices

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Slice</th>
<th>Distance</th>
<th>Hop Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>1066.1</td>
<td>1125.8</td>
<td>1079.5</td>
</tr>
<tr>
<td>LE</td>
<td>1300.8</td>
<td>1367.3</td>
<td>1331.3</td>
</tr>
<tr>
<td>PEN(α=0.2)</td>
<td>1300.1</td>
<td>1366.7</td>
<td>1335.5</td>
</tr>
<tr>
<td>PEN(α=0.5)</td>
<td>1301.4</td>
<td>1365.3</td>
<td>1332.6</td>
</tr>
<tr>
<td>PEN(α=0.8)</td>
<td>1264.1</td>
<td>1323</td>
<td>1288.1</td>
</tr>
<tr>
<td>DVP(α=0.2)</td>
<td>1236.7</td>
<td>1319</td>
<td>1278.6</td>
</tr>
<tr>
<td>DVP(α=0.5)</td>
<td>1202.3</td>
<td>1274.1</td>
<td>1230.6</td>
</tr>
<tr>
<td>DVP(α=0.8)</td>
<td>1159</td>
<td>1217.5</td>
<td>1157.7</td>
</tr>
</tbody>
</table>
CPLEX vs. Heuristic for Euro28

| $|P(d)|$ | $|D|$ | Number of slices | Execution time |
|-----|-----|-----|----------------|---------------|
| | | CPLEX | Greedy | CPLEX | Greedy |
| 4 | 20 | 28 | 28 | 260s | <1ms |
| 4 | 30 | 31 | 31 | 1h | <1ms |
| 4 | 40 | 34 | 34 | 1h | <1ms |
| 4 | 50 | Out of Memory | 58 | - | <1ms |
| 2 | 20 | 28 | 28 | 60s | <1ms |
| 2 | 30 | 25 | 31 | 1h | <1ms |
| 2 | 40 | 34 | 34 | 1h | <1ms |
| 2 | 50 | Out of Memory | 58 | - | <1ms |

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Spectrum usage for various types of demands – network Euro28 and 1 Pbps traffic

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid …", ONDM2017
Spectrum usage for various types of demands – network DT14 and 1 Pbps traffic

![Bar chart showing spectrum usage for different demands]
Spectrum usage for various types of demands – network Euro28 and 1 Pbps traffic

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid …", ONDM2017
Spectrum usage for various types of demands – network DT14 and 1 Pbps traffic

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid ...", ONDM2017
Average execution time of the heuristic (in seconds) as a function of the number of SpRcs for, 1 Pbps traffic

<table>
<thead>
<tr>
<th>Network</th>
<th>Number of spatial resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Euro28</td>
<td>2</td>
</tr>
<tr>
<td>DT14</td>
<td>1</td>
</tr>
</tbody>
</table>
Agenda

• Introduction and Motivation
• Optimization Problem
• Algorithm
• Results
• Conclusions
Conclusions

- A greedy algorithm with different strategies for sorting of demands and allocation of spectral-spatial channels provides results close to optimal ones.
- Spectrum usage in examined topologies decrease almost proportionally with the increase of SpRcs.
- The Flexible scenario yields similar results the Single scenario. Flexible, despite its capability to form SSChs in both domains, most of the time selects SSChs which use only one SpRc.
- The Flexible scenario is very complex in terms of SSChs number, what results in high execution time of simple heuristic.
- Future work includes development of heuristic and metaheuristic methods that enable solving large problem instances.

K. Walkowiak, "Selection of Spectral-Spatial Channels in SDM Flexgrid …", ONDM2017
Thank you for attention

Krzysztof.Walkowiak@pwr.edu.pl