NOKIA Bell Labs

"VERNE": New Packet-Optical Network for Optically Transparent and Lossless Data Centers

ONDM 2017

- Bogdan USCUMLIC, Dominique CHIARONI
- Nokia Bell Labs, Paris Saclay, France
- 17-05-2017

• Ethernet is the key technology inside of Data Centers

• Can an OPS network provide a cost efficient and a performant alternative?

Key requirements for data centers

- Data Centers requirements:
 - Cost
 - Scalability
 - Latency
- Optical Packet Switching benefits:
 - Traffic grooming & statistical multiplexing in the optical domain
 - Optical transparency of transit traffic
- Question: <u>What are the challenges for OPS</u> <u>networks in data centers???</u>

Problem of OEO conversion

- <u>2D torus</u> optical packet switching network
- <u>OEO conversion not</u> <u>completely removed!</u>

OPS 2D torus: OEO conversion bottleneck!

• It would be good to <u>avoid</u> <u>the OEO</u> conversion!

Problem of contention

- E.g. when sharing the wavelength between several flows
- Contention problem leads to:
 - Packet rerouting
 - Packet delay
 - Packet loss!

Problem of scalability

- TWIN network: Time-Domain Wavelength Interleaved Network
- The <u>scalability</u> issue due to wavelength addressing

Technical challenge

- Build an OPS network that is:
 - Optically transparent
 - Lossless (contention free)
 - <u>Scalable</u>

Is this possible?YES!

VERNE network

• VERNE = "Virtual, fully transparent, cost and enERgy efficient NEtwork"

• VERNE network analogy in real life: System of metro lines, without the intermediate stop

VERNE network architecture

- VERNE, a network that reaches the lower bound on TRX
- Network is covered by a number of <u>"optical buses/rings"</u>, that are disjoint sets of wavelengths /fibers
- Any destination can be reached via a single optical hop!
- <u>Time slotted, control channel</u> <u>attributed to each optical bus/ring</u>
- No O-E-O conversion on the intermediate nodes!
- No intermediate queueing => lower latency!

The example of VERNE network interconnection, when reach limit is set to 7 nodes

VERNE network example

Interconnecting the network with the virtual optical buses

Different variants of VERNE network

- From point of view of the synchronization:
 - VERNE I or "synchronous"
 - VERNE II or "fully synchronous«
 - VERNE III or "asynchronous«
- simultividuated From the point of view of the scheduling-chronized
 - VERNE I: Scheduling per bus
- VERNE II: Centralized or opportunistic scheduling
- VERNE III: Centralized scheduling with central routing point

Comparison of different VERNE variants

Architecture of the VERNE node

- Node composed of:
 - Photonic layer
 - Electrical layer
- Basic blocks:
 - Demultiplexing & Dropping
 - Blocking
 - Switching
 - Adding & Multiplexing
 - Optical packet deasembly
 - Synchronization and control
 - Optical packet assembly and scheduling
 - Client adaptation layer

ELECTRICAL LAYER

Photonic layer realization of the VERNE node

- Dropping by optical splitters
- Demultiplexing, packet blocking and multiplexing by packet blockers
- Switching by Photonic Switch
- Adding by couplers
- Different configurations in term of Photonic Switch position
- Control channel for carrying the OAM, synchronization and scheduling related information

Numerical results

- <u>Evalute savings in: #TRX,</u> <u>TRX cost, latency,</u> <u>scalability</u>
- Benchmark for the study:
 - Ethernet Fat Tree
 - Ethernet 2D torus
- Simple dimensioning algorithms
- TRX: 100 Gbit/s

VERNE vs Ethernet Fat-Tree TRX cost comparison

- Scenario 1:
 - VERNE vs Ethernet Fat-Tree data center
 - No oversubscription
 - In VERNE, TRXs allocated per optical buses (no impact of scheduling or synchronization)
- <u>VERNE saves TRX cost up</u> <u>to x4 times</u>

VERNE vs Ethernet 2D torus TRX cost comparison

- Scenario 2:
 - VERNE vs Ethernet 2D torus data center
 - Symmetric torus (of dimension N)
 - Shortest path routing for Ethernet
 - In VERNE, TRXs allocated per optical buses (no impact of scheduling or synchronization)
- <u>VERNE</u> achieves significant savings in TRX cost (up to 20 <u>times)</u>

Ease of the network virtualization

- VERNE designed for **<u>network virtualization and reconfigurability</u>**
- Optical Packet Switching => natural support for the network virtualization

Latency in VERNE

Sources of latency and jitter

	Ethernet	VERNE	
Traffic insertion	YES	YES	
Traffic extraction	YES	YES	
Traffic transit (Eth.)	YES	n.a.	
Traffic transit over the same bus/ring	n.a.	NO	
Traffic transit when changing the bus/ring	n.a.	NO	

• Insertion process latency in VERNE can be efficiently reduced by proper network dimensioning

An example of VERNE network with simple scheduling

- A ring VERNE network
- TRXs share the same wavelengths at the reception => Simple FIFO scheduling
- Geo/Geo/1 queueing model => average insertion latency in function of traffic intensity
- Latency limited to few time slots

VERNE: a scalable solution

- <u>A scalable solution:</u>
 - Can be mapped/installed over any physical topology
 - Node size is reduced, and number of TRX is at minimum
 - Packet blockers optional or not needed

Use of Packet Blockers		VERNE I	VERNE II	VERNE III
	YES			
	NO			Χ
E.g. VERNE is more sca	OPTIONAL	X	Χ	

The optical bus in VERNE can be mapped to a wavelength, but also to a waveband, a fiber or a fiber core

•

Conclusions

• We have shown that VERNE is a <u>good alternative to the</u> <u>Ethernet</u> Fat-Tree and 2D torus data centers

- VERNE network is focused on:
 - Reducing the **TRX number** to its minimum
 - Reducing the <u>network cost</u>
 - Improving the **<u>network latency</u>**
 - Improving the **network scalability**

THANK YOU !

NOKIA

TRX cost savings of VERNE network

• Definition of cost saving ratio α :

 $\alpha = \frac{\#TRX \ (ETH)}{\#TRX \ (VERNE)}$

- TRX @ 100 Gbit/sec used both for VERNE and Ethernet
- Cost savings for torus: x20 times
- Cost savings for Fat-Tree: x4 times

Key idea: remove the OEO conversion from the network

Reconfigurability of the VERNE network

© 2017 Nokia

27

VERNE III: the principle of centralized scheduling

- The <u>SDN controller</u> is responsible for the scheduling of the traffic on any "optical bus"
- The scheduling is based on the <u>dynamic control plane exchange</u> between the SDN controller and the source nodes
- To reach 100% throughput, it is essential to be in the case of <u>a separable graph</u> (containing a central point or a ring)

On the separability of the graphs and its impact on the network operation

- Imagine the entire OPS network as a cross bar electronic switch, with N inputs and N outputs
- For the separable and F-separable network topologies, 100% throughput scheduling is possible *
- Separability means that the delay from any source i to any destination j can be expressed as a sum of two delays u(i) + v(j), where u(i) is propagation delay to a central hub, and v(j) the propagation delay from it

