ONDM 2017

21th INTERNATIONAL CONFERENCE ON Optical Network Design and Modeling May 15-17, 2017 | Budapest, Hungary

AGILE FILTERLESS OPTICAL NETWORKING

Christine Tremblay

École de technologie supérieure, Canada Paul Littlewood, Michel P. Bélanger *Ciena, Canada* Lena Wosinska, Jiajia Chen *KTH Royal Institute of Technology, Sweden*

May 16, 2017

Coherent transmission as enabling technology

Higher-order modulation formats and digital signal processing (DSP) can bring significant changes to the architecture and management of optical networks through:

- coherent systems with DSP capability
- simplified optical line systems
- Increased system margin and spectrum usage

The concept of a **filterless optical network** has been introduced as an attempt to reduce the capital cost of agility while maintaining (improving) the operational advantages of an agile network.

What have we learned on filterless optical networking?

- Cost-effective network architecture
- Agility can be realized but with some trade-offs
- Promising approach for software defined networking (SDN)
- Inherently suitable for elastic optical networking
- Trialed and deployed by network operators

École de technologie supérieure

Outline

- Introduction
- Filterless network concepts and advantages
- Performance analysis and design trade-offs
- Challenges with filterless optical networks
- Conclusions

École de technologie supérieure

Contrasting active photonic switching and filterless photonic networks

ROADM-based networks are created using

- Tunable coherent transceivers
 - Simplified link engineering
 - Fiber impairment compensation
 - Selectivity
- Wavelength selective switches (WSS)
 - Wavelength add-drop at terminals
 - Wavelength switching at intermediate sites

Filterless networks are created using

- Tunable coherent transceivers
 - Simplified link engineering
 - Fiber impairment compensation
 - Channel selectivity
- Passive optical splitters/combiners
 - Wavelength add-drop at terminals
 - Fiber interconnection at intermediate sites

Le génie pour l'industrie

Active photonic switching and filterless node architectures

Active switching architecture

Filterless network architecture

The elimination of active switching and filtering components creates a broadcast and select architecture in which the agility is provided at the edge terminals by the coherent transceivers.

École de technologie supérieure

Example - add/drop node comparison

Advantages of filterless networks

• Removal of WSS elements

- \rightarrow simplified optical line systems
- \rightarrow Lower cost and footprint
- \rightarrow Reduced power consumption
- \rightarrow Improved robustness and mean time between failures (MTBF)
- → Simplified impairment-aware design (and SDN control more straightforward)

• Gridless architecture

- \rightarrow Elastic optical networking
- \rightarrow Dynamic spectrum allocation
- \rightarrow Colorless node operation
- \rightarrow Transition from fixed-grid at minimal cost
- Passive broadcast and select fiber trees
 - \rightarrow Multicast traffic support
 - \rightarrow Easier network planning
 - \rightarrow Simpler and faster connection establishment
 - \rightarrow Key enablers for multilayer networking

École de technologie supérieure

ONDM 2017 C. Tremblay | Budapest, Hungary | May 2017

Filterless network design

Two-step approach used:

- Step 1. Genetic algorithm applied to construct sets of fiber trees based on capacity demand and fiber topology.
 - Network connectivity created by using passive splitters and combiners at each network node.
 - Fiber tree design subject to constraints: network connectivity, laser loop avoidance , system reach.

Step 2. Static shortest-path routing over the fiber tree performed and wavelength assignment made using graph coloring metaheuristic.

École de technologie supérieure

Design constraints in filterless networks

- Fiber-tree length is limited due to system reach and noise funneling
- Utilization is reduced due to propagation of unfiltered channels blocking channels in alternate paths
- Closed loops are disallowed to avoid laser effects in optically amplified links

Terrestrial network comparison

	Active	Filterless	Active	Filterless	Active	Filterless
Relative cost of extra components	92	0.3	123	0.4	194	1.0
Wavelength count for equal traffic demand	30	37	22	28	56	88

- Significant savings due to replacement of switching and filtering elements
- Magnified wavelength consumption due to unfiltered channels

Comparative cost analysis

- Filterless networks can be deployed at a fraction of the cost of ROADM-based networks.
- Semi-filterless networks (using wavelength blockers or colored fixed passive filters in algorithmically determined locations) can provide extra capacity and connectivity alternatives between nodes.

12

Filterless architecture for submarine networks

- Current submarine optical networks have limited flexibility, compared to terrestrial ROADM networks:
 - ROADMs can be deployed at the cable landing stations only.
 - Fixed or power-switched fiber joints, or fixed OADMs, are deployed at branching units.
- Can the filterless architecture based on passive components already qualified for undersea applications be used for delivering agility in submarine networks?

Filterless solution for a submarine network

Conventional three-fiber-pair network solution

One-fiber-pair filterless network solution

École de technologie supérieure

Submarine filterless networks: cost analysis

Solution	Traffic distribution	Fiber pair (FP)	Average demand length (km)	Number of transceivers	Number of wavelengths (shortest path)	Total terminal cost (a.u.)	Total line cost (a.u.)
Conventional	Dedicated fiber (realistic case)	Black	3,612	58	16		
		Green	7,900	28	14		
		Blue	5,423	52	24		
			Total :	138	24	29.92 + 4	18,330
	Distributed over 3 FPs (ideal case)	3 FPs	5,188	134	24	29.92	18,330
Filterless	Total traffic	1 FP	5,184	134	67	18.72	16,113
		3 FPs	5,184	134	23	56.16	18,905

The filterless technology can reduce the terminal costs by 30-44% and the line equipment cost by 11-12% when compared to conventional submarine networks where WSSs can be deployed only at the cable landing stations.

École de technologie supérieure

Wavelength or spectrum consumption in filterless optical networks

- Filterless solutions are good for networks with small number of nodes (≤ 10 -12) and size (with respect to system reach), as well as good connectivity (≥ 0.8) and high average nodal degree (≥ 3.0).
- Additional 20-30% savings in spectrum consumption (at minimal upgrade cost) are possible through flex-grid operation in filterless networks.

Programmable filterless network architecture

A programmable filterless network architecture based on optical white boxes can reduce the spectrum consumption at a lower cost than ROADM-based approaches.

École de technologie supérieure17

Dynamic network resource allocation scheme

Filterless networks can enable significant transceiver and spectrum savings through dynamic resource allocation in long haul networks with time-varying traffic load.

Challenges with filterless networks

Integrated control

- \rightarrow Global network view is needed to understand blocking from unfiltered channels.
- \rightarrow Best solved using an external (SDN/PCE) control system

Physical aspects

- → Removal of per channel power adjustment in WSS can cause optical power management issues and potentially limit fiber tree size and optical reach.
- \rightarrow Can be mitigated by adjusting individual channel launch power levels.
- \rightarrow Optical loops must be avoided in creating the fiber trees to prevent laser effects.
- → Noise funneling due to absence of filtering needs to be taken into account in determining receiver penalty.

Security

- \rightarrow Security can be considered as a concern due to the broadcast architecture.
- → Can be addressed by using data encryption with deciphering key exchange and dynamic distribution of propagation impairment compensation between transceiver pairs.

Summary

Characteristic	Metro – Regional – Core				Submarine				Backhaul – Distribution			
	Active		Filterless		Active		Filterless		Active		Filterless	
Demand relative to network capacity	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High
Agility	•	₽		•	•	9		•				
Reliability					•							
Operations				•				•				
Spectrum consumption								•				
Solution complexity	\bigcirc				\bigcirc				\bigcirc	\bigcirc		

Filterless solutions perform well in metropolitan, regional and core applications when the demand is relatively low compared to the network capacity.

Applications

École de technologie supérieure

Le génie pour l'industrie

Conclusion

Core mesh networks

- \rightarrow First in cost and functionality is good
- \rightarrow Capacity constrained compared to ROADM-based networks
- \rightarrow Deploy with filterless and upgrade with ROADMs as capacity increases?

Submarine networks

 \rightarrow Promising economics – needs further practical evaluation

Metropolitan and aggregation networks

 \rightarrow Valuable network technology

💽 N D M 🚬 🕼 🗍 C. Tremblay | Budapest, Hungary | May 2017

Thank you!

Questions?

<u>christine.tremblay@etsmtl.ca</u> <u>http://profs.ele.etsmtl.ca/ctremblay</u>

École de technologie supérieure