
GMPLS	Network	Control	Plane Enabling
Quantum	Encryption in	End-to-End Services

Alejandro	Aguado,	Víctor	López,	Jesús Martínez-Mateo,
Momtchil Peev,	Diego	López and	Vicente	Martin	



Outline

• Introduction	
• Secure	Channel	Creation	
• QKD	node	architecture
• PCE/GMPLS	extensions	to	enable	automatic	provisioning
• Experimental	validation
• Conclusions



Introduction

• Quantum	key	distribution (QKD)	is	a	novel	technology	that	can	be	
seen	as	a	synchronized	source	of	symmetric	keys in	two	separated	
domains	that	is	immune	to	any	algorithmic	cryptanalysis.	
• On	the	other	hand,	network	services	are	increasingly	requesting	
more	flexibility	and	network	resources.
• One	of	the	biggest	demands	is	to	increase	the	level	of	security for	the	
transmission	between	remote	premises.
• In	this	work,	we	propose	a	node	architecture and	define	protocol	
requirements	in	a	GMPLS	environment	to	provide	QKD-enhanced	
security	in	end-to-end	services.



Introduction

BobAlice

Encrypt Encrypt

Key	
exchange

Channel	
Creation

Message	
Exchange

Message	
encryption

Eve



Introduction:	Quantum	Key	Distribution

BobAlice

Encrypt Decrypt

Key	
exchange

Message	
Exchange

Message	
encryption Eve

QKD	
System

QKD	
System

Public	Authenticated	Channel

Quantum	Channel

Ingredients:
• Qubit	transmitter	(typically	

photons),	Alice.
• Single	qubit	receivers,	Bob.
• Quantum	channel	(capable	of	

transmitting	qubits	from	Alice	to	
Bob,	in	our	case	fibre).

• Classical	channel	(public,	but	
authenticated).

Main	steps:
• Raw	key	exchange:

• Qubit	transmission
• Sifting	(basis	reconciliation)

• Key	post-processing:
• Information	reconciliation
• Error	verification
• Privacy	amplification

Data	Channel



Introduction:	Quantum	Key	Distribution
• QKD technology	can	be	regarded	as	two	
sources	of	synchronized	random	
numbers that	are	separated	physically.

• A	correct	implementation	will	deliver	
keys	of	the	highest	security

• It	can	be	mathematically	proven	to	be	
secure	(in	principle,	an	information	
theoretic	secure	(ITS)	primitive)

• QKD	has	some	limitations	that	do	not	affect	
the	conventional	cryptosystems,	usually	
based	on	computational	complexity.

• Any	kind	of	amplifiers	or	active	components
that	can	modify	the	state	of	these	signals	must	
be	bypassed.

• This	sets	a	limit	to	the	maximum	distance	(or	
absorptions)	that	a	QKD	protocol	can	tolerate,	
well	suited	to	be	used	within	a	metropolitan	
area	or	with	links	of	up	to	150	km

LIMITATIONS

Alice BobEve

Quantum	channel

Classical	channel



Secure	channel	creation

Exchange	Secure	Keys	/	Quantum	Channel
QKD	Box	
ETSI	Proxy

Lightpath creation	/	Control	Plane

Include	Keys	in	the	encryption	card

Exchange	information	/	Data	Plane

GMPLS	
Agent

GMPLS	
Agent

GMPLS	
Agent

GMPLS	
Agent

Encryptor
Encryptor

OXC OXC

PCE

…

Alice Bob

Eve

Key	
exchange

Channel	
Creation

Message	
Exchange

Message	
encryption

QKD	Box	
ETSI	Proxy



QKD	Box

ETSI	
Proxy

GMPLS	
Agent

Key	Req/Resp

Quantum	Link

Cl
as
sic

al
	

ch
an
ne

ls

Encryptor

OXC

Proprietary
protocols

Flow	control
Key	injection

PCE

Extended
PCEP Desired	capabilities:

• Access	to	QKD-generated	keys.
• Encryption	in	upstream	services	(Data	

encryptor,	security	module,	etc.).
• Switching/Routing.
• Control	plane	interface	enabling	automation

Example	of	QKD-enabled	network	node	
architecture



Definition	of	requirements	in	terms	of	
parameters
• Parameters	required	to	be	exchanged	(point-to-point	encryption):

• Session	ID	(key_handle):	Initially	set	as	0,	session	ID	gets	the	value	of	the	first	Key	
handle	extracted	by	the	source	agent	in	the	initial	setup.	The	source	agent	will	be	in	
charge	of	updates	(future	work).

• Key	length:	Length	of	the	key	to	be	used	for	the	encryption.
• Destination:	It	defines	the	other	peer	(encryptor/decryptor)	to	synchronise	with.	
Currently	defined	by	an	IP	address.

• Encryption	Layer:	Layer	where	encryption	is	performed.
• Refresh	type	and	value:	Type	of	refresh	to	be	done	for	a	key	(time/traffic/etc)	and	
the	value	to	be	considered	as	a	threshold.

• Algorithm:	Encryption	algorithm	to	be	used.



Distributed	GMPLS	Control

• Majority	of	the	commercial	deployments	of	optical	core	and	transport	
networks	are	based	on	GMPLS.
• GMPLS	was	standardized	by	IETF	in	CCAMP WG
• Fundamental	protocols:
• RSVP-TE	:	responsible	of	setting	up	end-to-end	quality-enabled	connections
• OSPF-TE:	dissemination	of	the	topology	and	traffic	engineering	(TE)	
information,	enabling	routing
• LMP	(Link	Management	Protocol):	is	responsible	of	links	management



PCEP	(PCReq,	PRep)

PCE

RSVP

IGP

Path	Computation	Element	

• PCE	learns	the	TE	DB	listening	
the	IGP.

• Active	Stateful	PCE	can	request	
to	create	a	path	using	PCInitiate.

• The	node	set-up	the	connection	
using	RSVP	Path,	Resv.

• GMPLS	is	complemented	with	a	logically	centralized	
element,	the	PCE

• Telefonica	Netphony
release	open	source	PCE	
implementation	and	
GMPLS	control	plane.



GMPLS+PCE	Architecture
Proposed	workflow:	Case	“Node	starts”

Node1
QKD

PCE

Node5
QKD

GMPLS	case:
- PCRequest including	metric	for	inline	

encryption.
- PCReply including	new	ERO	subobjects for	

key	management
- RSVP	including	the	same	ERO
- RSVP	QE	ERO	subobject detected	by	node	1.	

Key_handle unset	(=0),	it	gets	a	new	key	and	
key_handle,	and	adds	the	key_handle as	
sessionID	to	be	used	by	node5

- Node	5	gets	the	sessionID and	extracts	the	
required	key.

- The	rest	is	standard	RSVP

Node2

Node3

Node4

No	SessionID	(=0)
Inject	SessionID in	ERO

sessionID found
get	sessionID

4 metrics:
- Key	length
- Layer	of	encryption
- Refresh	type	/	value
- Enc_Alg



Experimental	validation

Emulated
Quantum

Link

ETSI	to	IDQ
Proxies

GMPLS
Control
Plane

https://github.com/alexaguado/DockerNet



Experimental	validation
OSPF	for	Quantum	encryption	capabilities

Informational	Capabilities	TLV

Quantum	Encryption	support	(bit	7	):	capable



Experimental	validation	PCEP

New	QE
ERO

subobject



Experimental	validation	RSVP	(signalling)

Node	4	QE ERO	subobject.
(before	node	2)
Type:	0x67
Value:	”00..00”	(64	bytes)
KeyLenght:	32
Enc_layer:	2
RefType:	0xfd
RefValue:	60
Alg:	10	(TBD)

Node	4	QE ERO	subobject.
(before	node	2)
Type:	0x67
Value:	“4a0e…052f”	(64	bytes)
KeyLenght:	32
Enc_layer:	2
RefType:	0xfd
RefValue:	60
Alg:	10	(TBD)



Conclusions

• We	propose	a	node	architecture	and	define	protocol	requirements	in	
a	GMPLS	environment	to	provide	QKD-enhanced	security	in	end-to-
end	services.
• This	is	the	first	work	to	propose,	implement	and	validate	extensions	in	
a	PCE/GMPLS	architecture	to	use	this	technology.
• The	work	is	done	with	Open	Source	tools	using	Netphony and	
DockerNet.
• As	future	work,	the	authors	will	explore	this	approach	in	OpenFlow or	
Netconf.



THANK	YOU!!!

Alejandro	Aguado,	Víctor	López,	Jesús Martínez-Mateo,
Momtchil Peev,	Diego	López and	Vicente	Martin	



Appendix	A
ETSI	GS	QKD	004	V1.1.1

for	remote	apps	and	IDQ3P



ETSI	IDQ	Proxy

• ETSI	GS	QKD	004	V1.1.1	defines	an	API	to	be	used	by	applications	
which	are	running	within	the	same	server	as	the	Key	Manager.
• In	order	to	justify	the	use	of	this	standard,	we	have	developed	a	proxy	
that	implements	ETSI	GS	QKD	004	V1.1.1-based	messages	to	
communicate	with	external	applications
• These	messages	are	mapped	to	IDQ3P	requests.
• Additional	Sync	messages	have	been	implementes as	well.
• This	interface	allows	to	use	a	single	identifier	(key_handle)	that	can	
be	used	to	extract	multiple	keys.



Modules	/	Messages

APP APP

ETSI	/	IDQ	
Proxy

ETSI	/	IDQ	
Proxy

IDQ	System IDQ	System

ALICE BOB

Quantum	channel
Error	correction
Distillation…

Sync messages:
Session Opened/closed

Block	Session,	Update Key

App	messages
Send_key_handle()ETSI	GS	QKD	004	V1.1.1	msgs

QKD_{OPEN,	CLOSE,	GET_KEY,
CONNECT_NONBLOCK,
CONNECT_BLOCKING}	

ETSI	GS	QKD	004	V1.1.1	msgs
QKD_{OPEN,	CLOSE,	GET_KEY,

CONNECT_NONBLOCK,
CONNECT_BLOCKING}	

IDQ3P IDQ3P



IDQ	System ETSI	/	IDQ	
Proxy APP APP ETSI	/	IDQ	

Proxy IDQ	System

Example	OPEN	&	CONNECT

QKD_OPEN()

Key_handle

Send_key_handle()

ACK

QKD_OPEN(Key_handle)

ACK
QKD_CONNECT_
NONBLOCK()

QKD_CONNECT_
NONBLOCK()

ACK

ACK

SYNC_OPEN(key_handle)

ALICE BOB



IDQ	System ETSI	/	IDQ	
Proxy APP APP ETSI	/	IDQ	

Proxy IDQ	System

Example	GET_KEY

QKD_GET_KEY(Key_handle)

Update_Key()

ACK

QKD_GET_KEY(key_handle)

KEY

SYNC_BLOCK(key_handle)

ALICE BOB

SYNC_KEY(key_ids)

GET_KEY()

KeyID,	Key

GET_KEY()

KeyID,	Key

ACK



IDQ	System ETSI	/	IDQ	
Proxy APP APP ETSI	/	IDQ	

Proxy IDQ	System

Example	CLOSE

QKD_CLOSE()

ACK

Send_close()?????

ACK

QKD_CLOSE(Key_handle)

ACK

SYNC_CLOSE(key_handle)

ALICE BOB


