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Introduction

• General Objective: Localize single-link failure in transparent op-
tical networks

• Specific Objective:

I Reduce the monitoring equipment (CAPEX)
I Reduce the Mean-Time-To-Repair (OPEX)
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Introduction

• We focus in Transparent Optical networks where fault localization
is not trivial.

Link Failure in Opaque Network

Link Failure in Transparent Network
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Existing Fault Localization Methods

Generic Fault Localization Approach

T. Panayiotou, S. P. Chatzis, G. Ellinas May 17, 2017 3 / 20



Existing Fault Localization Methods

Path correlation procedures:

• May not unambiguously identify the faulty link

• Can effectively reduce the number of links being suspected of caus-
ing the failure

• On-call engineers will have to resolve the problem (human effort,
MTTR increases as the network grows)
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Existing Fault Localization Methods

Probing Lightpaths (Monitor Information):

• Path correlation procedure complemented with monitoring informa-
tion

• Number of necessary monitoring equipment increases as the network
grows (CAPEX increases)

• Bandwidth is required for fault localization (lightpaths established
just for correlation purposes), affecting the network performance
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Proposed Framework

• Approach Overview:

• Advantages:

I Reduces the MTTR
I Reduces the bandwidth required for fault localization purposes
I Reduces the network cost (no monitors are assumed)
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Proposed Framework: A. Path correlation

• Graph Based Correlation Heuristic

I Intersects the links utilized by the affected lightpaths
I Returns a set of suspect links
I Removes from the set of suspect links the links utilized by the

unaffected lightpaths
I Returns the faulty link OR a set of suspect links
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Proposed Framework: A. Path correlation

• Example: Graph Based Correlation Heuristic

I Network properly working

I Link B fails

I GBC operation

. {A,B,C,D} ∩ {B,C,D,E} = {B,C,D}

. {B,C,D} − ({B,C,D} ∩ {C,F}) = {B,C,D} − {C} = {B,D}

. Set of suspect links {B,D}
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Proposed Framework: B. Probabilistic Approach

• Approach Aim: Generates a failure probability for each link sus-
pected of causing the failure.

• Approach Motivation:

I Optical related link failures are reported to follow the Weibull
distribution

Lj ∼Wei(λj , βj)

I Link failures are time dependent
I The class of GPs is one of the most widely used families of

stochastic processes for modeling dependent data observed over
time.
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Proposed Framework: B. Probabilistic Approach

• Assumption:

I cj(i): the number of times link ej has failed up to incident i−1.
I C(i): the total number of failures up to incident i.
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Proposed Framework: B. Probabilistic Approach

• GP Classifier Formulation: According to cj(∗), C(∗), and ac-
cording to the state of the network upon each failure incident.

I Training/test Dataset: D = {(x(i),y(i))}|i = 1, ..., n}

xj(i) =

{
− cj(i)

C(i)
, if ej ∈ S(i)

0, otherwise.
∀ej ∈ E

yj(i) =

{
1, if ej has failed at i

−1, otherwise
∀ej ∈ E

. n: the total number of known failure incidents.
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Proposed Framework: B. Probabilistic Approach

• Prediction Generation: GP classifier produces a probabilistic
prediction for each link in the network.

π , p(y(∗) = +1|X, y, x(∗))

=

∫
σ(f(∗))p(f(∗)|X, y, x(∗))df(∗) (1)

I The failure probability is given by the posterior over the latent
function σ(f(∗)),

I Latent function f(∗) constitutes the basic mechanism of the
GP model.
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Proposed Framework: B. Probabilistic Approach

• Model Formulation: The inferred latent function f(x) over all
the training inputs X = {x(i)}ni=1 and the test inputs x(∗) yields:[

f(X)
f(x(∗))

]
∼ N

(
0,

[
K(X,X) k(x(∗))
k(x(∗)) k(x(∗),x(∗))

])
(2)

I k(x(∗)) , [k(x(1),x(∗)), ...., k(x(n),x(∗))]T

I Matrix of the covariances between the n training data points
(gram matrix K):

K(X,X) ,


k(x(1),x(1)) k(x(1),x(2)) ... k(x(1),x(n))
k(x(2),x(1)) k(x(2),x(2)) ... k(x(2),x(n))

. . .

. . .

. . .
k(x(n),x(1)) k(x(n),x(2)) ... k(x(n),x(n))

 (3)
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Proposed Framework: B. Probabilistic Approach

• Model Training: Kernel function: k(x(z),x(m)) (expresses the
similarity between two data points x(k) and x(l)).

I ARD kernel: Determines how relevant each input component is,
thereby omitting input components that are deemed irrelevant.

k(x(z),x(m)) = θ0 exp{−1

2

n∑
j=1

ηj(xj(z)− xj(m))2} (4)

I θ0, {ηj}Dj=1 are hyperparameters of the kernel function
I The hyperparameters are optimized as part of the training pro-

cedure of the GP classifier (maximization of the log-likelihood
of the model).
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Enabling the Proposed Framework

• Assumption: A PCE element is present that is resource aware
and is able to maintain a centralized TE database with detailed
spectrum availability information.
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Experimental Results

• Injected 10,000 failure incidents in a dynamic OFDM network (7,000
for training the GP, 3,000 kept for testing the GP).

• Requests follow the Poisson process with exponentially distributed
holding times (a conventional RSA algorithm is utilized)
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Experimental Results

Approach Accuracy vs Traffic Load

Traffic load (Erlangs) 7 10 20

# Incidents in Dtest 3000 3000 3000

# Correctly Classified Incidents by GBC 1459 1816 2314

# Incidents in Dtest
r (Passed to GP) 1541 1184 686

# Correctly Classified Incidents by GP 1327 1068 655

GP Accuracy 0.86 0.9 0.95

Total Accuracy (GBC and GP) 0.93 0.96 0.99

• Training Time: Approximately 1 hour

• Prediction Time: Approximately 2 sec to classify a single inci-
dent
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Experimental Results

• Examining how the |Dtrain| affects the GP accuracy

|Dtrain| = 5000

Traffic load (Erlangs) 7 10 20

GP Accuracy 0.84 0.89 0.96

Total Accuracy (GBC and GP) 0.93 0.95 0.99

|Dtrain| = 3000

Traffic load (Erlangs) 7 10 20

GP Accuracy 0.83 0.88 0.95

Total Accuracy (GBC and GP) 0.91 0.95 0.99

|Dtrain| = 1000

Traffic load (Erlangs) 7 10 20

GP Accuracy 0.84 0.88 0.94

Total Accuracy (GBC and GP) 0.92 0.95 0.98
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Experimental Results

• Examining how many monitors would be required for achieving the
same accuracy as the one achieved by the proposed approach.

I The GBC heuristic is extended to the GBC heuristic with Mon-
itors.
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Conclusions - Future Work

• Proposed fault localization scheme aims at reducing the MTTR (the
human effort), and the CAPEX of the network.

• Two-step approach:

I A. Path correlation procedure (GBC heuristic)
I B. A probabilistic model is used (GP classifier)

• Achieved an overall high accuracy (93% − 99%) which is insignifi-
cantly affected by the number of training data.

• For achieving the same accuracy, as the one achieved by the pro-
posed scheme (no monitors), it would require that 60% of the net-
work nodes must be equipped with monitors.

• Future work: Scalability issues of the probabilistic approach as the
network grows.
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