

ONDM 2017 Tutorial ACINO: From Application Blending to Application Centricity

<u>Marco Savi</u>¹, Ciril Rozic², Pontus Sköldström³, Dimitrios Klonidis², Achim Autenrieth⁴, Victor Lopez⁵, Domenico Siracusa¹, Ioannis Tomkos²

¹Fondazione Bruno Kessler (FBK), CREATE-NET Research Center, Italy
 ²Athens Information Technology (AIT), Greece
 ³RISE ACREO, Sweden
 ⁴ADVA Optical Networking, Germany
 ⁵Telefonica I+D, Spain

Outline

- 1. Why application centricity
- 2. ACINO principles
- 3. Implementation: ACINO orchestrator
- 4. Details on multi-layer provisioning framework
- 5. Some simulation results
- 6. Movie!

Project ACINO at a glance

- ACINO: Application-Centric IP/optical Network Orchestration
- H2020 RIA (Research and Innovation Action) Project
 ICT6 Smart optical and wireless network technologies
- Project duration: 36 months (01/02/2015 31/01/2018)
- Partners: 6
- Budget: 2.88 M€
- Effort: 290 Person Months

ONDM 2017 Tutorial: ACINO

What applications want

Past	Present/Future
Mostly just bandwidth	Diverse set of requirements

- Simply provisioning enough bandwidth to applications is not enough anymore
- Applications are diversifying
 - Need to proper classify them
- Even if applications are classified
 - Many possible requirements may result in a lot of application classes

- Differentiate application flows down to the optical layer
 - Multi-layer approach
 - Some aggregation can still be done, but network can now cater to the specific applications' needs

Some ACINO Use Cases

Dynamic Virtual CDN deployment

Application-centric in-operation net planning

ACINO building blocks

Implementation of ACINO principles: the ACINO orchestrator

- ACINO needs an entity that
 - Has a complete view of the network
 - optical nodes
 - optical links
 - IP nodes
 - IP links
 - running services
 - ...
 - Must be able to add and remove connections in either layer
 - Must be able to communicate with network applications

SOFTWARE-DEFINED NETWORKING (SDN) APPROACH!

SDN Orchestration

SDN network orchestrator enabling applications to program the IP/Optical transport network

ACINO orchestrator implementation: resource allocation and optimization

ACINO orchestrator high-level architecture

SDN network orchestrator enabling applications to program the IP/Optical transport network

ACINO orchestrator details

DISMI primitives and grammar

• Primitives

- Actions describe the connection requests
- Constraints characterize the requested connection
- Selectors filter the traffic entering the network, enabling the creation of application classes
- How the primitives interact forms the grammar of the interface

ACINO orchestrator details

Multi-layer provisioning framework

Module definition

- IPP (IP Provisioning Module)
 - Tries to accommodate the service request at the IP layer
 - Finds an application-aware path
 - Such path meets all the application requirements specified by the service request (e.g. bandwidth, latency, availability, protection...)
 - No new lightpath is established in the network
- IP-OPT (IP Optimizer)
 - Rearranges IP connections in a *hitless* and optimized way
- OPP (Optical Provisioning Module)
 - Similar to IPP, but adds new IP links (lightpaths)
 - Finds the optimal lightpath(s) to add
 - Finds an application-aware path using such lightpath(s)

Service request definition

- s source IP router
- -d destination IP router
- b requested bandwidth
- *l* maximum path latency
- -a minimum path availability
- -p protection true/false
- Example: SR(A, C, 10Gbps, 50ms, 99.999%, true)

Auxiliary graph model

- IPP and OPP are *auxiliary-graph-based* modules
- Auxiliary Graph (AG)
 - Single layer graph
 - Constructed everytime IPP or OPP is called
 - «Augmented» IP network graph
- AG nodes
 - IP routers
- AG links
 - Existing lightpaths
 - Potential lightpaths
- Application-aware paths searched on AG

Chosen path for SR(A, C, b, l, a, e)

IP/MPLS

IPP details

• Auxilary Graph construction

- Add all existing lightpaths
- Prune those not meeting b

Path selection

- Find the K shortest paths on AG
 between s and d (candidate paths)
 - Weight on AG links: different possible polices
 - We choose physical length of the lightpaths (distance)
- Prune those not meeting *l* and *a*
- Select
 - The first path in the list if *p=false*
 - The first disjoint path couple in the list if *p=true*

Resource allocation

 Allocate resources on the chosen existing lightpaths (i.e., at IP layer)

IP-OPT details

- Finds the best list of IP connection *moves*
- Running services must not be affected
- Implementation of moves
 - Hitless (make-before-break)
 - List can be abandoned at any point, e.g. in case of a failure

IP-OPT details

- Search for the moves
 - 1. Sort the connections (initial or random or by BW size)
 - 2. Each connection
 - 1. Move to one of K shortest IP paths
 - 2. Choose the move with the best "cost"
- "Cost" minimization objectives in order

priority	quantity	motivation
1.	# of blocked requests	accommodate applications
2.	# of IP interfaces	save energy and cost
3.	IP link load balancing	prepare for future requests

OPP details

• Auxiliary graph construction

- Similar to IPP, but augments the auxiliary graph with *potential lightpaths*
 - Lightpaths that can be established if needed
 - *k-SP FirstFit* Routing and Spectrum Assignment at optical layer to find potential lightpath
- Path selection
 - Same as IPP

Resource allocation

- Allocate resources on the chosen existing lightpaths (IP layer)
- Establish the chosen potential lightpaths (optical layer)
 - Allocate resources on the newlyestablished lightpaths (IP layer)

Simulation tool: many requirements

- An engine to accommodate incoming service requests
 - Dynamically
 - Multi-layer (IP/optical)
 - Simulation code must be used later to run on a testbed
 - Open source
 - Able to incorporate ACINO code

P. Pavon-Marino *et al.*, "Net2Plan: an open source network planning tool for bridging the gap between academia and industry," IEEE Network, 2015

Net2Plan in a nutshell

- Java-based network planning tool
- Can easily manage multi-layer networks
- Provides a very nice GUI! ⁽²⁾
- Two tools
 - Offline network design (planning)
 - Online simulation (discrete event simulator)
- Implementation of the framework using the Online Simulation Tool
- Simulation of a dynamic scenario with service requests arriving/leaving over time
 - Two Java classes needed
 - Event generator
 - Event processor

Net2Plan as an ACINO simulation platform

Inputs fiber & IP topology, traffic demands, service

Simulation Results

Scenario setup: Reference network

- Fiber lengths are known
 - Propagation delay = latency
- We use only one fiber per fiber-link
- Transceiver bitrates: 10 Gb/s and 100 Gb/s

Scenario setup: Input traffic (1)

Traffic class	Percentage	Service requirements	Resource allocation policy
High priority	10%	Max latency: 4.5ms BW: 1-10 Gb/s	Route separately in optical
Latency-sensitive	15%	Max latency: 4.5ms BW: 10-100 Gb/s	Aggregate in IP
Best effort	75%	BW: 10-100 Gb/s	
	100%		

- End-to-end traffic matrix known
- Poisson arrival/departure with average rates from the traffic matrix

IP-OPT evaluated (1)

ACINO vs. Benchmark (2)

Application-unaware

 Considers only the *bandwidth* requirement in the provisioning of service requests

Application-aware

- Considers all the application requirements (bandwidth, latency, availability, protection)
- ACINO optimization and multilayer application-unaware optimization comparison
 - Benefits of ACINO in terms of application-awareness

Scenario setup: Input traffic (2)

Traffic class	Percentage	Service requirements	Resource allocation policy
Latency-sensitive	Varies	Max latency: 6ms BW: 10-100 Gb/s	
Latency-sensitive + Availability + Protection	Varies	Max latency: 6ms Availability: 99.5% BW: 10-100 Gb/s Protection at IP	Aggregate in IP
Best effort	Varies	BW: 10-100 Gb/s	
	100%		

JU / 0

Evaluation metrics (2)

Service Request Violation

 The ratio of the connections that do not meet any of their service requirements, to the total number of requested connections

Connection Establishment Blocking

 The ratio of the connections blocked due to lack of resources able to meet the service requirements, to the total number of requested connections

ACINO vs. Benchmark (2)

Blocking of ACINO always much lower than (Blocking+Violations) of Application-Unaware

Let's summarize

- In ACINO we deal with
 - Dynamic/online allocation/optimization
 - Multi-layer
 - Application-centricity/awareness
- Introduced an allocation/optimization framework
 - Application-centric in IP *and* optical multi-layer networks
 - Reuses efficiently resources
- IP optimization can save resources
- ACINO blocks less than the benchmark blocks and violates

Three more slides, then the movie!

How the framework works on a testbed

- The ACINO orchestrator has been implemented in ONOS http://onosproject.org/
- The multi-layer provisioning framework has been implemented in Net2Plan
- Need to exchange information between ONOS and Net2Plan
 - Design of an interface called NetRap

How the framework works on a testbed

ONOS-Net2Plan interaction

- 1. Net2Plan receives from ONOS: network topology and other network information
- 2. Net2Plan computes a path (or says "I can't")
- 3. Net2Plan sends the path information back to ONOS
- 4. ONOS requests a path from IP and optical controllers

ACINO on a testbed

Three IP+optical nodes

How it all comes together: video demo

- <u>https://youtu.be/5_u_2gULNW0</u>
- By Pontus Sköldström, ACREO, Sweden
- 10 minutes

For more info, see publications

- Ć. Rožić, C. Matrakidis, D. Klonidis, I. Tomkos, *Network Primitives Based on Latency and Recovery Time in Orchestrated Multi-layer Networks*, International Conference on Transparent Optical Networks (ICTON) 2017
- P. Sköldström, Ć. Rožić, J. J. Pedreño Manresa, *Making Powerful Friends: Introducing ONOS and Net2Plan to Each Other*, International Conference on Transparent Optical Networks (ICTON) 2017
- M. Savi, C. Rozic, C. Matrakidis, D. Klonidis, D. Siracusa, I. Tomkos, *Benefits of Multi-Layer Application-Aware Resource Allocation and Optimization*, European Conference on Networks and Communications (EuCNC) 2017
- V. Lopez, D. Konidis, D. Siracusa, C. Rozic, I. Tomkos, J. P. Fernandez-Palacios, *On the benefits of multi-layer optimization and application awareness (invited)*, Journal of Lightwave Technology 2017
- Ć. Rožić, M. Savi, C. Matrakidis, D. Siracusa, D. Klonidis, I. Tomkos, *A Framework for Dynamic Multi-layer Resource Allocation and Optimization in Application-Centric Networking*, Optical Networking and Communication Conference (OFC) 2017
- M. Savi, F. Pederzolli, D. Siracusa, *An Application-Aware Multi-Layer Service Provisioning Algorithm based on Auxiliary Graphs*, Optical Networking and Communication Conference (OFC) 2017
- F. Pederzolli, D. Siracusa, P. Sköldström, S. Junique, Ć. Rožić, D. Klonidis, T. Szyrkowiec, M. Chamania, V. Uceda, V. Lopez, Y. Shikhmanter, O. Gerstel, *SDN application-centric orchestration for multi-layer transport networks (invited)*, International Conference on Transparent Optical Networks (ICTON) 2016
- Ć. Rožić, D. Klonidis, I. Tomkos, Latency-aware Multi-layer Network Optimization in IP-over-WDM Core Networks, 42nd European Conference on Optical Communication (ECOC) 2016
- Ć. Rožić, D. Klonidis, I. Tomkos, *A Survey of Multi-layer Network Optimization (invited)*, 20th International Conference on Optical Network Design and Modeling (ONDM) 2016

Thank you for your attention

And thanks to all partners in EU H2020 project ACINO

www.acino.eu

Backup slides

Approach:

From application-unaware baseline...

- All traffic served by an IP interface mapped into an optical connection sent towards the destination IP interface
- Application classes could be treated differently at the IP layer by its built-in QoS mechanisms
 - \rightarrow not currently a feature of the optical layer...

Approach: ... to application-centricity!

- keep the different application classes separate down to the optical layer
 - Different service (latency, survivability, security, ...) for different apps

Latency awareness example

ACINO on a testbed

Issues:

- Computed paths need to have *port* information, and Net2Plan does not have it
- Optical box has fixed filters built in, so only some optical paths are valid
- IP routers have grey interfaces to optical – these IP links must not not go up/down dynamically

• Solutions:

1. Model ports as nodes

- 2. Each "port" has a *color* attribute; only same color ports can connect
- 3. Grey interface IP links have a *do not delete me* tag; they are never removed, and no new ones are added

5G network scenario

- The three applications take different paths through the network
 - Aligned with the emerging 5G network slicing concept

Scenario setup: Input traffic (2)

Traffic class	Percentage	Service requirements	Resource allocation policy
High priority	10%	Max latency: 6ms BW: 1-10 Gb/s	Route separately in optical
Latency-sensitive + Availability	40%	Max latency: 6ms Availability: 99.5% BW: 10-100 Gb/s	Aggregate in IP
Best effort	50%	BW: 10-100 Gb/s	
	100%		

IP-OPT evaluated (2)

IP-OPT saves resources but **OPP** is called more often