

Dynamic Optical Fiber Delivery of Ka-Band Packet Transmissions for Wireless Access Networks

<u>Sebastián Rodríguez</u>, Peter Madsen, Idelfonso Tafur Monroy and J. J. Vegas Olmos

DTU Fotonik Department of Photonics Engineering

Agenda

FIWIN5G DTU

- » Motivation.
- » Proposed Architecture.
- » Experimental Setup.
- » Experimental Results.
- » Conclusions.

The Access Network is changing RoF based C-RAN

- » The processing In the RAN is being centralized. Moving the BBUs to the Central office.
- » The wireless signal is directly distributed to the antenna using Analogue Radio-over-Fiber
- » Higher wireless carrier frequencies are going to be used

Millimeter-wave Carrier frequencies

Fiwin<mark>5</mark>G DTU

» Increased capacity by applications in higher frequency bands

CO: central office BS: base station

Dynamic Traffic

» Traffic is dynamic (well-known fact)

A typical data traffic day in Europe.

-A((+55

» Emergence of reconfigurable networks

- » Elasticity, efficiency, dynamic and planned adaptation...
- » Software defined optics

Flexible Access Network

Dynamic distribution in the C-RAN

Experimental setup

Control

Circuit

.....

MEMS

MEMS switch SW1x8-8N 2013-17-2825

Optical Switch

Time Slots Experimental Results

9

BER Performance

Experimental Results

Conclusions

- » An optical switching system to dynamically deliver the signal of an optically generated Ka-band (26.5 – 40 GHz) transmission has been presented and experimentally evaluated.
- » The resulting RF packets have been transmitted over a wireless distance of 2 m, presenting values below the limit for 7% overhead with a measured sensitivity of -8.2 dBm. The main penalty is the effects of the attenuation of the wireless channel.
- » The implementation of this kind of switches will enable an extra layer of management and control to the future wireless centralized radio access network.

References

[1] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and J. Sköld, "5G wireless access: requirements and realization," IEEE Commun. Mag., vol. 52, no. 12, pp. 42–47, Dec. 2014.

[2] China Mobile Research Institute white parer v3, "C-RAN The Road Towards Green RAN," December, 2013. [Online]. Available: http://labs.chinamobile.com/.

[3] T. Pfeiffer, "Next Generation Mobile Fronthaul Architectures," in Optical Fiber Communication Conference, 2015, p. M2J.7.

[4] J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, "Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability," IEEE Photonics Technol. Lett., vol. 20, no. 13, pp. 1127–1129, Jul. 2008.

[5] S. Rommel, S. Rodriguez, L. Chorchos, E. Grakhova, A. Sultanov, J. Turkiewicz, J. Olmos, and I. Monroy, "Outdoor W-Band Hybrid Photonic Wireless Link Based on an Optical SFP+ Module," IEEE Photonics Technol. Lett., pp. 1–1, 2016.

[6] P. T. Dat, A. Kanno, and T. Kawanishi, "Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells," IEEE Wirel. Commun., vol. 22, no. 5, pp. 67–75, Oct. 2015.

[7] S. Rodriguez, R. Puerta, H. Kim, J. J. Vegas Olmos, and I. Tafur Monroy, "Photonic UP-convertion of carrierless amplitude phase signals for wireless communications on the KA-band," Microw. Opt. Technol. Lett., vol. 58, no. 9, pp. 2068–2070, Sep. 2016.

References

[8] I. Feliciano da Costa, S. Rodriguez, R. Puerta, J. J. Vegas Olmos, A. C. Sodré Jr., L. G. da Silva, D. Spadoti, and I. Tafur Monroy, "Photonic Downconversion and Optically Controlled Reconfigurable Antennas in mm-waves Wireless Networks," in Optical Fiber Communication Conference, 2016, p. W3K.3.

[9] T. S. Rappaport, Shu Sun, R. Mayzus, Hang Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!," IEEE Access, vol. 1, pp. 335–349, 2013.

[10] S. Sun, G. R. MacCartney, and T. S. Rappaport, "Millimeter-Wave Distance-Dependent Large-Scale Propagation Measurements and Path Loss Models for Outdoor and Indoor 5G Systems," Nov. 2015.

[11] S. M. Razavizadeh, M. Ahn, and I. Lee, "Three-Dimensional Beamforming: A new enabling technology for 5G wireless networks," IEEE Signal Process. Mag., vol. 31, no. 6, pp. 94–101,

Nov. 2014.

[12] K. Chandra, R. Venkatesha Prasad, and I. Niemegeers, "An architectural framework for 5G indoor communications," in 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), 2015, pp. 1144–1149.

[13] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, "5G Ultra-Dense Cellular Networks," IEEE Wirel. Commun., vol. 23, no. 1, pp. 72–79, Feb. 2016.

[14] N. Chi, J. J. V. Olmos, K. Thakulsukanant, Zhuoran Wang, O. Ansell, Siyuan Yu, and Dexiu Huang, "Experimental characteristics of optical crosspoint switch matrix and its applications in optical packet switching," J. Light. Technol., vol. 24, no. 10, pp. 3646–3653, Oct. 2006.

[15] S. Rodríguez, S. Rommel, J. J. Vegas Olmos, and I. T. Monroy, "Reconfigurable radio access unit to dynamically distribute W-band signals in 5G wireless access networks," Opt. Switch. Netw., vol. 24, pp. 21–24, 2017.

juse@fotonik.dtu.dk

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642355

You can find us...

Metro-Access & Short Range Systems

www.metroaccess.dk

MetroAccess DTU Fotonik

MetroAccessGroup

Metro Access Photonics Engineering

