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Talk Outline

* Introduction
* What is a photoconductive switch?
* Device characterization and experimental results

e Application of the switch
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Introduction

e Recent research and developments in telecommunications
are aiming for
* multi-Gbit/s bandwidths and
* frequencies reaching the lower THz band (>100 GHz) in wireless

communications
* Microwave-photonics plays a key role in this area
* Integrated electronic and photonic components together

e Photonic assisted solutions

 Compared to fully electronics, performance can be increased by
at least one order of magnitude

* Photoconductive switches are an example of photonic
assisted device. It can give a robust solution for receiver
side signal processing



The photoconductive switch (PSW)

* Alight sensitive gap in a coplanar waveguide

* Material:
* Fe:InP substrate
* InGaAs mesa etched in the gap, implanted with Nitrogen
ions to create large number of defects
* InGaAs sensitive to 1550 nm wavelengths

* llluminating the mesa with 1550 nm laser we can control its
conductance



Basic principle of PSWs

Optical pulses are operating the
ON and OFF state of the switch.
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The output of the switch is the
sampled input signal with the
repetition rate of the laser pulses

The input of the switch is an analog
high-frequency electrical signal.



Electrical characterization

* |-V curve shows closely linear response
e Optical power — Output current curve is linear

e Electrical bandwidth measurement:
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Electrical characterization

e Electrical bandwidth measurement

* Based on the VNA results, a lumped element equivalent circuit can be

used for high-frequency modelling of the device

* The low capacitance of the model shows the high electrical bandwidth
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Electro-optic characterization

* The large number of defects caused by the Nitrogen-ion
implantation, ensures a picosecond carrier recombination
time in the semiconductor under laser illumination

* This recombination time can be measured by measuring the
response of the switch to ultra-short femtosecond laser
pulses

* Electro-optic autocorrelation experiments are used to
measure the recombination time



Electro-optic characterization

* Electro-optic autocorrelation experiment used to measure
the recombination time
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Signal (A.U.)

Electro-optic characterization
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Signal (A.U.)

Electro-optic characterization
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Signal (A.U.)

Electro-optic characterization
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The measured ultra-fast 1.2 ps response time makes the switch available to have

sampling rates (laser pulse repetition rates) up to 100 GHz.



Photoconductive sampling

* Demonstration of the high-bandwidth and sampling
capabilities
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e Laser pulse train as a clock, input analog RF signal to
sample

* The two signals are mixing inside the switch,
creating a frequency comb output



Photoconductive sampling

The power of the
Fre — N*Facer Product is
proportional to the
sampled RF power, which
decreases as it reaches the
cut-off frequency of the
device
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Output Power (dBm)

Photoconductive sampling
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The low variation of output power confirms the wide electrical

bandwidth of the PSW




Heterodyne demodulation

e PSW used as a hybrid mixer
* Input RF signal 1-67 GHz (F)
* InAs/InP quantum-dash mode-locked laser self-oscillating at

58.625 GHz (F)
* Output: Fe=Fpe-F o
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Heterodyne demodulation

 PSW used as a hybrid mixer
* Input RF signal 1-67 GHz (F)

* InAs/InP quantum-dash mode-locked laser self-oscillating at
58.625 GHz (F )

* Output: Fe=Fee-F o
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Heterodyne demodulation
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The mixing loss around 80 dB, is in the same order of magnitude as unbiased
UTC photodiodes used as mixers
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Applications

* The PSW can be integrated in an Analog-to-digital
converter for the sampling function

» Using laser sources as a clock
with ultra-low jitter

of 100 fs or lower, and high
repetition rate pulses, the
photonic assisted ADC could be
positioned in the Walden-plot
towards the higher
performance regions, than the
electronic ADCs
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Source: Anatol Khilo et al., “Photonic ADC: overcoming the
bottleneck of electronic jitter”, Optical Express 20, 4454-4469 (2012)
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* Heterodyne demodulation for the receiver side of a
high-frequency wireless link

Received signal
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Thank you for your attention!



