Applications of Machine Learning and Intelligent Algorithms for SDN and NFV

May 16, 2017

Daniel King, University of Lancaster
Intelligent Networking
Next generation network challenges

• Convergence means the integration of these services over a common infrastructure and provision through a single point of attachment
 – Combining compute and connection resources for end-to-end services

• The customer expects:
 – Rapid delivery of new services
 – Greater bandwidth and scalability
 – Higher QoE and More sophisticated SLAs

• The provider needs to:
 – Drive up income from deployed resources
 – Find a way to deliver QoE and meet SLAs
 – Deploy agile management and controller platforms
 – Whilst reducing operational costs
Intelligent Networking
Solving current network problems

• Throwing resources at the problem?
 – A guaranteed fat pipe or over provisioning of compute resources is a good way to deliver quality

• But. Exceeding bandwidth and resource requirements will be expensive and impractical in the long-term
 – Inevitably, even in a lightly used network, some links reach critical utilisation
 – It can be hard to predict which links or compute resources will be affected in failure scenarios
 – New customers can cause unforeseen congestion points

• Better network planning and appropriate reoptimisation of services
 – Requires complex path computation capabilities
 – Model the entire network (multi-layer modelling)
 – Consider all current services and compute in parallel not sequentially
 – Respond to network events and deliver services in real-time
 – Requires online path computation capabilities
Intelligent Networking
Solving current network problems

• Support of complex transport services:
 – P2P and P2MP based service types
 – High levels of QoS demand multiple constraints
 – Minimal cost, minimal delay, high bandwidth
 – Constraints may be conflicting

• Multiple resources to support one service
 – Compute, storage, function and connectivity

• Resource continuity issues
 – Multi-layer networking
 – Non-Linear effects and Wavelength continuity

• Path diversity or congruence:
 – Mesh protection resource sharing
 – m:n protection

• Concurrent network-wide optimisation and frequent reoptimisation
Intelligent Networking

Network Operations

• Questions Operators asked themselves…
 – Where is my traffic flowing today?
 – Where do I place new resources, such as links, switches and functions?
 – What resource capacities do I require?
 – How do I design my network to minimise or negate the impact of resource failures?
 – What configuration metrics do I place on the network equipment that will influence traffic flows and quality of service?
 – Where is the most cost-effective place to add new resources to accommodate anticipated traffic growth?
 – What is the most effective mechanism for carrying new types of services?
 – Which protection mechanism is most effective for network topology and service types I currently have?
 – What if…?
Intelligent Networking
Existing computation techniques

• Single-service computations
 – CSPF is perfectly functional
 • Optimal paths for single LSPs with multiple constraints
 – Modified CSPF can compute multiple paths
 • Good for solving k-disjoint paths
 – Conventionally used to satisfy real-time requirements

• Linear programming can optimise a whole network
 – Can take long periods to develop
 – Not flexible to changing demands, new topologies, new constraints, or new service types

• But can it do it fast enough?
 – More constraints mean slower computation times
 – More paths mean more complex computation
 – Increasingly we see competing constraints
 – Larger networks are phenomenally complicated
Intelligent Networking
Comparing techniques

- Conventional algorithms are deterministic
 - Same solution every time
 - Normally tuned to the specific technologies and services
 - Not good at handling multiple service types
 - Generally slow when handling large networks with many elements

- Non-heuristic processes assess a wider variety of data to derive solutions
 - May produce a different, but correct solution each time
 - Is able to handle a variety of topologies
 - Would be capable of managing different service types
Intelligent Networking

What is Machine Learning?

• The complexity in traditional computer programming is in the code (programs that people write).

• In machine learning, learning algorithms are in principle simple and the complexity (structure) is in the data.
 – The way we automatically learn that structure is the heart of machine learning.

• A trained learning algorithm (e.g., neural network, boosting, decision tree, SVM, …) is highly flexible, capable of solving complex problems.
Intelligent Networking

When to use Machine Learning?

• When patterns exists in our data
 – Even if we don’t know what they are
 • Or perhaps especially when we don’t know what they are
 • Or if they are just noise

• We can not pin down the functional relationships mathematically
 – Else we would just code up the algorithm
 – Neural networks as function approximators
 • Need this for scale

• When we have lots of (unlabeled) data
 – Labeled training sets harder to come by
 – Data is of high-dimension
 • High dimension “features”
 • For example, sensor data
 – Want to “discover” lower-dimension representations
 • Dimension reduction
Intelligent Networking
Are we in the next Hype Cycle?

Wait..
Are we are here (again)?
Intelligent Networking
Next Steps for applying ML to Networking?

• Lots of open source ML frameworks, Cloud APIs, Examples, …
 – Google Tensorflow (tensorflow.org)
 – Facebook Torch (torch.ch)
 – Microsoft CNTK (github.com/Microsoft/CNTK)
 – Amazon MXNET (aws.amazon.com/mxnet)
 – Keras (keras.io/)
 – Theano (github.com/Theano)

• Lots of Network Data, but…
 – Standardized and labelled datasets are scarce
 – Most network data sources (e.g., NETFLOW) not designed for ML
 – Arbitrary data might be over-valued

• Skills gap persists, but… it still requires skill/experience to
 – Build DNN architectures/models
 – Finding ”good” settings for hyper-parameters
Intelligent Networking
Join IETF IDNet (Intelligence-Defined Network)

• The IDNet (Intelligence-Defined Network) is aiming to apply Machine Learning mechanisms network environment and react to dynamic situations.
 – https://www.ietf.org/mailman/listinfo/idnet

• Topics include, but not limited:
 – Better management & control of network technologies
 – Architecture or reference model for the Intelligence-Defined Network
 – Integrate IDN with various network infrastructure architectures and IETF standards
 – Data requirements for AI network controlling, including new measurement technologies
 – Network data selection, data structure & protocol for data transmission