# Large scale optical circuit switches for future data center applications 

ONDM2017 workshop

Yojiro Mori and Ken－ichi Sato
周向女 NAGOYA

## Outline

# 1. Introduction <br> -Optical circuit switch for datacenter- 

2. Sub-switch configuration
3. Large-scale optical switch
$>$ based on tunable laser
> based on tunable filter
4. Summary

## Datacenter Flow



Datacenter flow= Mice flow $+\underline{\text { Elephant flow }}$

## Hybrid Network Architecture



## Large-scale optical circuit switch

Space switch

Pros:
Wavelength independency

Cons:
Complexity $\propto(\text { Port count })^{2}$

Wavelength-routing switch

Pros:
Cost effectiveness

Cons:
Bandwidth limitation

## Combination of space switch and wavelength-routing switch

## Outline

1. Introduction
-Optical circuit switch for datacenter-

## 2. Sub-switch configuration

3. Large-scale optical switch $>$ based on tunable laser > based on tunable filter
4. Summary

## Space Switch



DC: Delivery and coupling

## Wavelength-routing Switch

$N \times N$ wavelength-routing switch based on tunable laser


Wavelength-tunable laser
$N \times N$ wavelength-routing switch based on tunable filter


Wavelength-tunable filter

## Outline

1. Introduction
-Optical circuit switch for datacenter-
2. Sub-switch configuration
3. Large-scale optical switch
$>$ based on tunable laser
$>$ based on tunable filter
4. Summary

## Switch based on Tunable Laser



## Experimental Demonstration [oecczo16]

NAGOYA
UNIVERSITY

- $1,440 \times 1,440$ optical switch
$>$ DC-switch scale is 8
$>$ \# of wavelengths is $\mathbf{1 8 0}$ (on $25-\mathrm{GHz}$ grid)
- 10Gbps intensity-modulated signals


Crosstalk source

Structure of fast-tunable laser (Collaboration with AIST)


PLC-based AWG (Collaboration with NTT Electronics)


Module box $120 \times 70 \times 7 \mathrm{~mm}^{3}$

## Switching Time [oecczo16]

Edge wavelength


Good transmission characteristic with $<500 \mu s$ switching time

## Outline

1. Introduction
-Optical circuit switch for datacenter-
2. Sub-switch configuration
3. Large-scale optical switch
$>$ based on tunable laser
$>$ based on tunable filter
4. Summary

## Switch based on Tunable Filter



|  | Fixed laser | $N \times 1$ AWG | EDFA | MxM multicast <br> switch | Tunable filter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total \# | $M N$ | $M$ | $M$ | $N$ | $M N$ |
| Per-port | 1 | $1 / N$ | $1 / N$ | $1 / M$ | 1 |

## Silicon-Photonic Switch Components [ECOC2016]

## Fabricated 8x8 MC/DC switch

 (collaboration with NEC)
(a) chip

(b) module

(c) measured switching time

Total loss: 16 dB
On-chip loss: 4 dB

## Fabricated tunable filter switch

 (collaboration with AIST)
(a) chip

(b) module

(c) measured switching time Total loss: 18 dB
On-chip loss: 4 dB

## Proof-of-Concept Experiment [Ecocz2016]

Adjacent channels as Inter -band crosstalk source


## Outline

1. Introduction
-Optical circuit switch for datacenter-
2. Sub-switch configuration
3. Large-scale optical switch
$>$ based on tunable laser
$>$ based on tunable filter
4. Summary

- We introduced large-scale optical circuit switches for future intra-datacenter applications.
- The large-scale switch can be attained with a combination of space switches and wavelengthrouting switches.
- We demonstrated optical switches based on tunable laser or tunable filter.
- Considering the switching time, tunable-filter-based switch may be suitable for future applications.

Thank you for you kind attention

