Large scale optical circuit switches for future data center applications

ONDM2017 workshop

Yojiro Mori and Ken-ichi Sato

Introduction Optical circuit switch for datacenter

- 2. Sub-switch configuration
- 3. Large-scale optical switch
 - based on tunable laser
 - based on tunable filter

4. Summary

Datacenter flow= Mice flow + Elephant flow

Hybrid Network Architecture

Large-scale optical circuit switch

Space switch

Pros: Wavelength independency

Cons: Complexity \propto (Port count)²

Wavelength-routing switch

Pros: Cost effectiveness

Cons: Bandwidth limitation

Combination of space switch and wavelength-routing switch

Introduction Optical circuit switch for datacenter-

- 2. Sub-switch configuration
- 3. Large-scale optical switch
 - based on tunable laser
 - based on tunable filter

4. Summary

DC: Delivery and coupling

Wavelength-routing Switch

Introduction -Optical circuit switch for datacenter

- 2. Sub-switch configuration
- 3. Large-scale optical switch
- ► based on tunable laser
 - based on tunable filter

4. Summary

Switch based on Tunable Laser

Experimental Demonstration [OECC2016]

Structure of fast-tunable laser (Collaboration with AIST)

Yojiro MORI, Nagoya University

PLC-based AWG (Collaboration with NTT Electronics)

PLC chip 36.4x44.0 mm²

Switching Time [DECC2016]

Good transmission characteristic with <500µs switching time

Introduction -Optical circuit switch for datacenter

- 2. Sub-switch configuration
- 3. Large-scale optical switch
 - based on tunable laser
- ► based on tunable filter

4. Summary

Switch based on Tunable Filter

	Fixed laser	Nx1 AWG	EDFA	MxM multicast switch	Tunable filter
Total #	MN	М	М	N	MN
Per-port	1	1/N	1/N	1/M	1

Fabricated 8x8 MC/DC switch (collaboration with NEC)

^{14 mm} (a) chip

(c) measured switching time

Total loss: 16 dB On-chip loss: 4 dB

Fabricated tunable filter switch (collaboration with AIST)

4.5 mm

(c) measured switching time

Total loss: 18 dB On-chip loss: 4 dB

Proof-of-Concept Experiment [ECOC2016]

Introduction -Optical circuit switch for datacenter

- 2. Sub-switch configuration
- 3. Large-scale optical switch
 - based on tunable laser
 - based on tunable filter

4. Summary

Summary

- We introduced large-scale optical circuit switches for future intra-datacenter applications.
- The large-scale switch can be attained with a combination of space switches and wavelengthrouting switches.
- We demonstrated optical switches based on tunable laser or tunable filter.
- Considering the switching time, tunable-filter-based switch may be suitable for future applications.

Thank you for you kind attention